Documentation Verification Report

Dedup

πŸ“ Source: Mathlib/Data/Multiset/Dedup.lean

Statistics

MetricCount
Definitionsdedup
1
Theoremsdedup_append_left, dedup_add, dedup, le_dedup_iff_le, dedup_add_left, dedup_add_right, coe_dedup, count_dedup, dedup_cons_of_mem, dedup_cons_of_notMem, dedup_eq_self, dedup_eq_zero, dedup_ext, dedup_idem, dedup_le, dedup_map_dedup_eq, dedup_map_of_injective, dedup_singleton, dedup_subset, dedup_subset', dedup_zero, le_dedup, le_dedup_self, mem_dedup, nodup_dedup, subset_dedup, subset_dedup'
27
Total28

List.Subset

Theorems

NameKindAssumesProvesValidatesDepends On
dedup_append_left πŸ“–mathematicalβ€”List.dedupβ€”Multiset.coe_eq_coe
Multiset.coe_dedup
Multiset.coe_add
Multiset.Subset.dedup_add_left

Multiset

Definitions

NameCategoryTheorems
dedup πŸ“–CompOp
48 mathmath: dedup_ext, dedup_cons, gcd_dedup, dedup_eq_zero, dedup_eq_self, dedup_bind_dedup, inf_dedup, dedup_card_eq_card_iff_nodup, Finset.biUnion_val, Finset.dedup_eq_self, le_dedup, dedup_add, dedup_nsmul, lcm_dedup, le_dedup_self, Disjoint.ndunion_eq, dedup_zero, mem_dedup, nodup_dedup, sup_dedup, dedup_map_of_injective, Finset.insert_val', fold_dedup_idem, dedup_cons_of_notMem, count_dedup, dedup_le, dedup_idem, Finpartition.ofSetoid_parts_val, card_toFinset, Disjoint.dedup_add, coe_dedup, subset_dedup', dedup_sym2, subset_dedup, Nodup.dedup, toFinset_dedup, dedup_cons_of_mem, Subset.dedup_add_right, dedup_subset', Nodup.le_dedup_iff_le, Finset.image_val, le_smul_dedup, Subset.dedup_add_left, dedup_singleton, dedup_subset, dedup_map_dedup_eq, Finpartition.avoid_parts_val, toFinset_val

Theorems

NameKindAssumesProvesValidatesDepends On
coe_dedup πŸ“–mathematicalβ€”dedup
ofList
List.dedup
β€”β€”
count_dedup πŸ“–mathematicalβ€”count
dedup
Multiset
instMembership
decidableMem
β€”Quot.induction_on
coe_count
List.count_dedup
dedup_cons_of_mem πŸ“–mathematicalMultiset
instMembership
dedup
cons
β€”Quot.induction_on
List.dedup_cons_of_mem
dedup_cons_of_notMem πŸ“–mathematicalMultiset
instMembership
dedup
cons
β€”Quot.induction_on
List.dedup_cons_of_notMem
dedup_eq_self πŸ“–mathematicalβ€”dedup
Nodup
β€”nodup_dedup
Quot.induction_on
List.Nodup.dedup
dedup_eq_zero πŸ“–mathematicalβ€”dedup
Multiset
instZero
β€”eq_zero_of_subset_zero
subset_dedup
dedup_zero
dedup_ext πŸ“–mathematicalβ€”dedup
Multiset
instMembership
β€”β€”
dedup_idem πŸ“–mathematicalβ€”dedupβ€”Quot.induction_on
List.dedup_idem
dedup_le πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
dedup
β€”Quot.induction_on
List.dedup_sublist
dedup_map_dedup_eq πŸ“–mathematicalβ€”dedup
map
β€”β€”
dedup_map_of_injective πŸ“–mathematicalβ€”dedup
map
β€”Quot.induction_on
List.dedup_map_of_injective
dedup_singleton πŸ“–mathematicalβ€”dedup
Multiset
instSingleton
β€”Nodup.dedup
nodup_singleton
dedup_subset πŸ“–mathematicalβ€”Multiset
instHasSubset
dedup
β€”subset_of_le
dedup_le
dedup_subset' πŸ“–mathematicalβ€”Multiset
instHasSubset
dedup
β€”Subset.trans
subset_dedup
dedup_subset
dedup_zero πŸ“–mathematicalβ€”dedup
Multiset
instZero
β€”β€”
le_dedup πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
dedup
Nodup
β€”le_trans
dedup_le
nodup_of_le
nodup_dedup
le_iff_subset
Subset.trans
subset_of_le
subset_dedup
le_dedup_self πŸ“–mathematicalβ€”Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
dedup
Nodup
β€”le_dedup
le_rfl
mem_dedup πŸ“–mathematicalβ€”Multiset
instMembership
dedup
β€”Quot.induction_on
List.mem_dedup
nodup_dedup πŸ“–mathematicalβ€”Nodup
dedup
β€”Quot.induction_on
List.nodup_dedup
subset_dedup πŸ“–mathematicalβ€”Multiset
instHasSubset
dedup
β€”mem_dedup
subset_dedup' πŸ“–mathematicalβ€”Multiset
instHasSubset
dedup
β€”Subset.trans
dedup_subset
subset_dedup

Multiset.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
dedup_add πŸ“–mathematicalDisjoint
Multiset
Multiset.instPartialOrder
Multiset.instOrderBot
Multiset.dedup
Multiset.instAdd
β€”Quot.induction_onβ‚‚
List.Disjoint.dedup_append

Multiset.Nodup

Theorems

NameKindAssumesProvesValidatesDepends On
dedup πŸ“–mathematicalMultiset.NodupMultiset.dedupβ€”Multiset.dedup_eq_self
le_dedup_iff_le πŸ“–mathematicalMultiset.NodupMultiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Multiset.dedup
β€”β€”

Multiset.Subset

Theorems

NameKindAssumesProvesValidatesDepends On
dedup_add_left πŸ“–mathematicalMultiset
Multiset.instHasSubset
Multiset.dedup
Multiset.instAdd
β€”Multiset.add_comm
dedup_add_right
dedup_add_right πŸ“–mathematicalMultiset
Multiset.instHasSubset
Multiset.dedup
Multiset.instAdd
β€”Quot.induction_onβ‚‚
List.Subset.dedup_append_right

---

← Back to Index