Documentation Verification Report

Defs

📁 Source: Mathlib/Data/Multiset/Defs.lean

Statistics

MetricCount
DefinitionsLe, attach, card, decidableDexistsMultiset, decidableDforallMultiset, decidableEq, decidableEqPiMultiset, decidableExistsMultiset, decidableForallMultiset, decidableLE, decidableMem, instCoeList, instDecidableEquivListOfDecidableEq, instDecidableRListOfDecidableEq, instHasSSubset, instHasSubset, instMembership, instPartialOrder, instSizeOf, nodupDecidable, ofList, pmap, sizeOf
23
Theoremssubset, ext, refl, trans, card_attach, card_le_card, card_lt_card, card_mono, card_pmap, card_strictMono, coe_attach, coe_card, coe_eq_coe, coe_le, coe_nodup, coe_pmap, coe_reverse, coe_subset, eq_of_le_of_card_le, instIsNonstrictStrictOrder, instWellFoundedLT, leInductionOn, le_iff_subset, lift_coe, mem_attach, mem_coe, mem_of_le, mem_of_subset, mem_pmap, nodup_of_le, notMem_mono, pairwise_coe_iff, pairwise_coe_iff_pairwise, pmap_congr, quot_mk_to_coe, quot_mk_to_coe', quot_mk_to_coe'', subset_iff, subset_of_le
39
Total62

Multiset

Definitions

NameCategoryTheorems
Le 📖MathDef
attach 📖CompOp
23 mathmath: attach_ndinsert, count_attach, attach_map_val', Sym.attach_mk, attach_map_val, card_attach, countP_attach, attach_cons, filter_attach, mem_attach, Nodup.attach, erase_attach_map, Finset.attach_val, Finsupp.supportedEquivFinsupp_apply_support_val, attach_zero, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, attach_bind_coe, coe_attach, Sym.coe_attach, erase_attach_map_val, nodup_attach, filter_attach', pmap_eq_map_attach
card 📖CompOp
175 mathmath: card_eq_zero, Ideal.pow_multiset_sum_mem_span_pow, countP_le_card, card_eq_countP_add_countP, IsNonarchimedean.multiset_powerset_image_add, Polynomial.card_roots_le_map, Sym.val_eq_coe, prod_X_sub_X_eq_sum_esymm, Equiv.Perm.sign_of_cycleType, prod_map_neg, noncommSum_eq_card_nsmul, card_filter_le_iff, Polynomial.card_roots_sub_C', sum_count_eq_card, card_pi, powersetCard_card_add, Polynomial.map_sub_roots_sprod_eq_prod_map_eval, vadd_sum, card_eq_three, card_Ioc_eq_card_Icc_sub_one, toFinset_sum_count_eq, IsAlgClosed.card_roots_eq_natDegree, dedup_card_eq_card_iff_nodup, PMF.toMeasure_ofMultiset_apply, mem_powersetCardAux, MvPolynomial.totalDegree_eq, toFinsupp_sum_eq, card_Ico_eq_card_Icc_sub_one, Polynomial.natDegree_eq_card_roots', card_replicate, mem_powersetCard, Polynomial.card_roots_le_derivative, Finsupp.card_toMultiset, eq_replicate_of_mem, toFinset_card_le, Finset.map_sym_eq_piAntidiag, card_add, Cubic.splits_iff_card_roots, Polynomial.card_roots_map_le_degree, sup_powerset_len, card_le_card, count_eq_card_filter_eq, sum_le_card_nsmul, CovBy.card_multiset, Polynomial.Splits.degree_eq_card_roots, card_range, IsAlgClosed.card_roots_map_eq_natDegree_of_isUnit_leadingCoeff, countP_True, length_ndinsert_of_notMem, card_nsmul_le_sum, card_erase_add_one, card_erase_eq_ite, length_toList, map_const, Polynomial.card_nthRoots, cardHom_apply, card_nsmul, IsAlgClosed.card_roots_map_eq_natDegree_from_simpleRing, multinomial_filter_ne, card_le_card_toFinset_add_one_iff, Equiv.Perm.card_cycleType_eq_one, card_nthRoots_subgroup_units, card_eq_four, PMF.toOuterMeasure_ofMultiset_apply, map_count_True_eq_filter_card, Equiv.Perm.card_cycleType_pos, pow_card_le_prod, Sym2.card_toMultiset, card_attach, Finset.sum_pow_of_commute, Polynomial.exists_multiset_roots, card_singleton, card_powersetCard, card_erase_le, AlternatingGroup.card_of_cycleType, Polynomial.splits_iff_card_roots, Associated.card_factors_eq, card_cons, countP_map, MvPolynomial.totalDegree_le_degrees_card, IsAlgClosed.card_aroots_eq_natDegree, rel_replicate_left, noncommProd_eq_pow_card, prod_map_le_pow_card, Polynomial.card_roots_le_one_of_irreducible, Polynomial.card_roots', Polynomial.card_roots_X_pow_sub_C, card_antidiagonal, count_le_card, length_ndinsert_of_mem, IsAlgClosed.card_aroots_eq_natDegree_of_leadingCoeff_ne_zero, Polynomial.Splits.natDegree_eq_card_roots, card_product, Polynomial.natDegree_multiset_prod_X_sub_C_eq_card, card_zero, card_pmap, card_sum, Polynomial.card_roots_map_le_natDegree, card_mono, count_map, card_Ioo_eq_card_Icc_sub_two, card_toFinset, length_sort, card_erase_of_mem, Equiv.Perm.card_cycleType_eq_zero, IsAlgClosed.card_roots_map_eq_natDegree_of_injective, toFinset_card_eq_one_iff, eq_replicate, grade_eq, card_eq_two, Polynomial.card_roots, Polynomial.degree_eq_card_roots, toFinset_card_of_nodup, Cycle.card_toMultiset, Equiv.Perm.cycleType_of_pow_prime_eq_one, card_pos, card_powerset, IsAlgClosed.card_roots_map_eq_natDegree_of_leadingCoeff_ne_zero, toFinset_card_eq_card_iff_nodup, IsAlgClosed.card_aroots_eq_natDegree_of_isUnit_leadingCoeff, Sym.oneEquiv_apply, Finset.card_mk, card_sections, card_eq_one, coe_card, IsPrimitiveRoot.card_nthRoots_one, Polynomial.card_roots_le_map_of_injective, countP_eq_card, UniqueFactorizationMonoid.card_factors_of_irreducible, card_join, card_erase_lt_of_mem, Finset.card_def, prod_X_add_C_eq_sum_esymm, rel_replicate_right, card_lt_card, Polynomial.exists_prod_multiset_X_sub_C_mul, Polynomial.degree_eq_card_roots', Finset.card_val, card_pos_iff_exists_mem, Finset.sum_pow, card_finsuppSum, card_toEnumFinset, card_disjSum, eq_replicate_card, count_eq_card, card_pair, countP_eq_card_filter, IsPrimitiveRoot.card_nthRoots, Polynomial.natDegree_eq_card_roots, AlternatingGroup.map_subtype_of_cycleType, card_eq_card_of_rel, smul_prod, Nat.filter_multiset_Ico_card_eq_of_periodic, bind_powerset_len, map_const', card_bind, prod_le_pow_card, Polynomial.coeff_multiset_prod_of_natDegree_le, card_coe, card_sub, Polynomial.card_roots_sub_C, Sym.val_replicate, AlternatingGroup.card_of_cycleType_mul_eq, card_map, card_strictMono, PMF.ofMultiset_apply, Squarefree.moebius_eq, Nat.card_antidiagonal, Polynomial.roots_def, card_sym2, card_sigma, toFinset_eq_singleton_iff, PrimeMultiset.card_ofPrime, Sym.card_coe, card_Ioo_eq_card_Ico_sub_one
decidableDexistsMultiset 📖CompOp
decidableDforallMultiset 📖CompOp
4 mathmath: Equiv.Perm.card_of_cycleType_mul_eq, Equiv.Perm.card_of_cycleType, AlternatingGroup.card_of_cycleType, AlternatingGroup.card_of_cycleType_mul_eq
decidableEq 📖CompOp
9 mathmath: Equiv.Perm.card_of_cycleType_mul_eq, sup_powerset_len, AlternatingGroup.card_of_cycleType_singleton, Equiv.Perm.card_of_cycleType_eq_zero_iff, Equiv.Perm.card_of_cycleType, AlternatingGroup.card_of_cycleType, Equiv.Perm.card_of_cycleType_singleton, AlternatingGroup.map_subtype_of_cycleType, AlternatingGroup.card_of_cycleType_mul_eq
decidableEqPiMultiset 📖CompOp
decidableExistsMultiset 📖CompOp
decidableForallMultiset 📖CompOp
decidableLE 📖CompOp
decidableMem 📖CompOp
5 mathmath: card_erase_eq_ite, count_dedup, count_eq_of_nodup, max_norm_root_eq_spectralValue, filter_attach'
instCoeList 📖CompOp
instDecidableEquivListOfDecidableEq 📖CompOp
instDecidableRListOfDecidableEq 📖CompOp
instHasSSubset 📖CompOp
6 mathmath: isWellFounded_ssubset, ssubset_singleton_iff, ssubset_cons, instIsNonstrictStrictOrder, toFinset_ssubset, zero_ssubset
instHasSubset 📖CompOp
34 mathmath: le_iff_subset, subset_of_le, coe_subset, Ico_subset_Ico_iff, cons_subset, filter_subset, subset_ndunion_left, MvPolynomial.degrees_rename, range_subset, le_ndinter, ndunion_le, subset_ndunion_right, Finset.subset_def, Subset.refl, instIsNonstrictStrictOrder, zero_subset, singleton_subset, subset_iff, subset_zero, subset_cons, replicate_subset_singleton, subset_dedup', subset_add_left, ndinter_subset_left, subset_add_right, toFinset_subset, subset_dedup, ndinter_subset_right, erase_subset, dedup_subset', dedup_subset, Finset.val_le_iff_val_subset, UniqueFactorizationMonoid.radical_dvd_radical_iff_normalizedFactors_subset_normalizedFactors, Le.subset
instMembership 📖CompOp
224 mathmath: dedup_ext, Polynomial.mem_aroots', Finset.pimage_eq_image_filter, Finmap.lookup_eq_some_iff, exists_associated_mem_of_dvd_prod, erase_lt, lcm_eq_zero_iff, Nodup.notMem, IsNonarchimedean.multiset_powerset_image_add, attach_ndinsert, isConjRoot_iff_mem_minpoly_aroots, UniqueFactorizationMonoid.mem_normalizedFactors_iff, Polynomial.mem_roots_sub_C', notMem_zero, card_filter_le_iff, Polynomial.zero_notMem_multiset_map_X_sub_C, count_attach, mem_powerset, mem_coe, mem_union, Finset.mem_mk, mem_sigma, IsUltrametricDist.exists_norm_multiset_prod_le, cons_subset, Finset.mem_sum, Prime.exists_mem_multiset_map_dvd, mem_pi, inr_mem_disjSum, coe_mem, Cubic.mem_roots_iff, mem_sub_of_nodup, disjoint_singleton, attach_map_val', mem_rootsOfUnity_iff_mem_nthRoots, mem_powersetCard, left_notMem_Ioo, Finset.mk_cons, UniqueFactorizationMonoid.exists_mem_factors, eq_zero_iff_forall_notMem, mem_map, Cycle.mem_lists_iff_coe_eq, Prime.exists_mem_multiset_dvd, Nat.mem_antidiagonalTuple, Nat.mem_antidiagonal, Sym.attach_mk, setOf_mem_sym2, normalizedFactorsEquivOfQuotEquiv_symm, mem_ndinsert, Ideal.IsPrime.multiset_prod_map_le, Sym.mem_mk, IsNonarchimedean.multiset_image_add_of_nonempty, Polynomial.mem_roots_map_of_injective, mem_sup_map_support_iff, Finmap.mem_def, Finset.mem_univ_val, right_notMem_Ico, attach_map_val, prod_eq_zero_iff, card_erase_eq_ite, mem_antidiagonal, mem_erase_of_ne, mk_mem_sym2_iff, Finset.noncommProd_lemma, Associates.mem_factorSet_some, mem_dedup, IsUltrametricDist.exists_norm_multiset_sum_le, nodup_cons, inl_mem_disjSum, Finsupp.mem_toMultiset, Equiv.Perm.mem_cycleType_iff, mem_add, UniqueFactorizationMonoid.exists_mem_normalizedFactors, mem_sym2_iff, mem_disjSum, mem_range, left_notMem_Ioc, exists_max_image, IsLocalization.OverPrime.mem_normalizedFactors_of_isPrime, left_mem_Ico, mem_ndunion, mem_sections, card_attach, Finset.sum_pow_of_commute, count_ne_zero, countP_attach, Ideal.IsPrime.multiset_prod_le, Finset.noncommSum_insert_of_notMem, mem_map_of_injective, finite_toSet, count_pos, right_mem_Icc, iSup_mem_map_of_ne_zero, attach_cons, Finset.noncommSum_insert_of_notMem', Finset.noncommSum_cons, Associates.mem_factors'_iff_dvd, Algebra.IsAlgebraic.lift_cardinalMk_le_sigma_polynomial, mem_filterMap, filter_attach, mem_nsmul, mem_lists_iff, UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd, count_dedup, mem_cons, Ideal.IsPrime.multiset_prod_mem_iff_exists_mem, Polynomial.mem_roots_sub_C, mem_Ioi, Finmap.mem_lookup_iff, Algebra.IsAlgebraic.cardinalMk_le_sigma_polynomial, Polynomial.mem_roots_iff_aeval_eq_zero, UniqueFactorizationMonoid.mem_primeFactors, disjoint_left, Ideal.mem_normalizedFactors_iff, mem_replicate, Finsupp.mem_support_multiset_sum, mem_Ioc, Associates.exists_mem_multiset_le_of_prime, mem_attach, Sym2.mem_toMultiset, singleton_subset, mem_sort, mem_singleton, mem_sup, IntermediateField.algHomAdjoinIntegralEquiv_symm_apply_gen, notMem_range_self, PrimeMultiset.mem_ofNatMultiset, exists_min_image, disjoint_cons_left, Finset.noncommProd_cons', SimpleGraph.ComponentCompl.infinite_iff_in_all_ranges, subset_iff, Polynomial.mem_roots, Nodup.attach, Ideal.mem_primesOver_iff_mem_normalizedFactors, Polynomial.mem_roots', mem_Ioo, emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_symm_eq_emultiplicity, count_eq_of_nodup, disjoint_cons_right, erase_attach_map, Nodup.mem_erase_iff, Polynomial.mem_roots_map, mem_Iio, Polynomial.mem_normalizedFactors_iff, FractionalOperation.IsValid.contains, mem_toList, finite_toSet_toFinset, Nodup.ext, mem_bind, disjoint_ndinsert_right, Polynomial.mem_aroots, max_norm_root_eq_spectralValue, PowerBasis.liftEquiv'_apply_coe, mem_nsmul_of_ne_zero, countP_pos, mem_Iic, mem_singleton_self, mem_sub, Relation.cutExpand_iff, right_notMem_Ioo, UniqueFactorizationMonoid.mem_normalizedFactors_iff', ndinsert_le, mem_filter, rootsOfUnityEquivNthRoots_apply, Finset.noncommProd_insert_of_notMem', mem_sum, attach_zero, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, disjoint_right, attach_bind_coe, MvPolynomial.mem_degrees, mem_join, NumberField.mem_multisetInfinitePlace, exists_mem_of_ne_zero, IsNonarchimedean.multiset_image_add, mem_Icc, Sym.mem_coe, PowerBasis.liftEquiv'_symm_apply_apply, Nodup.notMem_erase, Finset.noncommSum_cons', PNat.mem_factorMultiset, mem_cons_self, count_eq_zero, add_singleton_eq_iff, right_mem_Ioc, card_pos_iff_exists_mem, Ideal.multiset_prod_eq_bot, Polynomial.mem_nthRoots, singleton_le, left_mem_Icc, gcd_ne_zero_iff, mem_Ici, mem_of_mem_toEnumFinset, lcm_ne_zero_iff, rootsOfUnityEquivNthRoots_symm_apply, Polynomial.zero_notMem_multiset_map_X_add_C, self_mem_range_succ, one_le_count_iff_mem, PrimeMultiset.mem_ofNatList, mem_toFinset, UniqueFactorizationMonoid.zero_notMem_normalizedFactors, erase_attach_map_val, empty_or_exists_mem, Finset.noncommProd_insert_of_notMem, nodup_attach, Associates.mem_factors'_of_dvd, disjoint_ndinsert_left, mem_ndinter, filter_attach', NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, singleton_disjoint, mem_Ico, Finset.noncommSum_lemma, Finset.mem_val, Finset.mem_def, mem_ndinsert_self, mem_pmap, pmap_eq_map_attach, Finset.noncommProd_cons, mem_product, map_eq_cons, UniqueFactorizationMonoid.exists_mem_factors_of_dvd, mem_inter, Polynomial.toSubring_one
instPartialOrder 📖CompOp
189 mathmath: Finset.val_strictMono, ndunion_le_union, sub_le_self, le_iff_subset, coe_le, covBy_iff, MvPolynomial.degrees_monomial, disjoint_finset_sum_left, erase_lt, Finsupp.toMultiset_strictMono, le_singleton, CovBy.finset_val, le_iff_count, union_le_iff, UniqueFactorizationMonoid.disjoint_normalizedFactors, Finset.val_lt_iff, card_Ico, mem_powerset, Icc_eq, lt_iff_cons_le, Finset.ordConnected_range_val, isAtom_singleton, sub_le_iff_le_add', mem_powersetCardAux, instIsOrderedCancelAddMonoid, disjoint_add_left, range_disjoint_map_add, disjoint_singleton, le_ndinsert_self, le_dedup, mem_powersetCard, instCanonicallyOrderedAdd, disjSum_strictMono_left, Associates.prod_le_prod_iff_le, add_le_add_iff_right, add_eq_union_iff_disjoint, disjoint_list_sum_left, prod_X_sub_C_dvd_iff_le_roots, instExistsAddOfLE, disjoint_union_left, finset_sum_eq_sup_iff_disjoint, nodup_bind, UniqueFactorizationMonoid.normalizedFactors_pos, card_Ioc, le_dedup_self, le_union_right, map_fst_le_of_subset_toEnumFinset, UniqueFactorizationMonoid.factors_pos, le_add_sub, add_le_add_iff_left, DFinsupp.toMultiset_le_toMultiset, MvPolynomial.degrees_pow_le, monotone_filter_right, replicate_le_replicate, ndinter_le_left, Associates.factors_le, Polynomial.map_roots_le, map_single_le_powerset, disjoint_finset_sum_right, instAddLeftMono, toEnumFinset_subset_iff, le_add_left, MvPolynomial.degrees_map_le, disjSum_mono_right, bot_eq_zero, disjoint_sum_left, le_ndinter, MvPolynomial.degrees_indicator, Associates.factors_mono, le_inter_iff, ndunion_le, MvPolynomial.degrees_sub_le, le_cons_erase, le_union_left, instWellFoundedLT, disjoint_map_map, MvPolynomial.degrees_sum_le, filter_le, sub_le_iff_le_add, Nodup.add_iff, Polynomial.roots_expand_pow_map_iterateFrobenius_le, nodup_iff_le, cons_le_of_notMem, Polynomial.map_roots_le_of_injective, pairwise_disjoint_powersetCard, Polynomial.Splits.dvd_iff_roots_le_roots, disjoint_left, map_mono, MvPolynomial.mem_degreesLE, Finsupp.coe_orderIsoMultiset_symm, inter_le_ndinter, ndunion_le_add, dedup_le, card_mono, MvPolynomial.degrees_prod_le, disjoint_toFinset, Ico_disjoint_Ico, le_ndunion_left, lt_cons_self, MvPolynomial.degrees_add_le, map_le_map_iff, MvPolynomial.degrees_mul_le, disjoint_cons_left, grade_eq, disjoint_union_right, Finset.disjoint_val, inter_le_right, monotone_filter_left, Polynomial.roots.le_of_dvd, ZMod.erdos_ginzburg_ziv_multiset, Finset.grade_multiset_eq, mapEmbedding_apply, Nodup.le_nsmul_iff_le, disjoint_cons_right, cons_lt_cons_iff, union_le_add, UniqueFactorizationMonoid.le_emultiplicity_iff_replicate_le_normalizedFactors, zero_disjoint, inter_le_left, disjoint_ndinsert_right, le_zero, erase_le_iff_le_cons, toDFinsupp_le_toDFinsupp, map_strictMono, coe_disjoint, Equiv.Perm.cycleType_le_of_mem_cycleFactorsFinset, WCovBy.finset_val, card_Iic, le_count_iff_replicate_le, UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors, ndinsert_le, le_cons_self, instOrderedSub, Finset.val_wcovBy_val, range_le, le_replicate_iff, MvPolynomial.degrees_X', disjoint_right, le_sub_add, le_add_right, card_Icc, powersetCard_le_powerset, lt_singleton, Int.erdos_ginzburg_ziv_multiset, erase_le, toDFinsupp_lt_toDFinsupp, disjoint_of_nodup_add, covBy_cons, zero_le, ndinter_le_right, singleton_le, Nodup.le_dedup_iff_le, le_cons_of_notMem, disjoint_add_right, le_smul_dedup, DFinsupp.toMultiset_lt_toMultiset, le_iff_exists_add, replicate_mono, replicate_le_coe, Associates.prod_le, cons_le_cons_iff, mem_powersetAux, ndinter_eq_zero_iff_disjoint, disjSum_strictMono_right, card_Ioo, le_ndunion_right, disjoint_list_sum_right, le_filter, Finset.val_le_iff_val_subset, isAtom_iff, lt_replicate_succ, disjoint_ndinsert_left, disjoint_sum_right, toFinsupp_strictMono, instAddLeftReflectLE, Finset.val_le_iff, singleton_disjoint, disjoint_iff_ne, Polynomial.roots_expand_map_frobenius_le, Finsupp.coe_orderIsoMultiset, IsAlgClosed.dvd_iff_roots_le_roots, inter_eq_zero_iff_disjoint, monotone_sym2, le_bind, UniqueFactorizationMonoid.dvdNotUnit_iff_normalizedFactors_lt_normalizedFactors, nodup_add, card_strictMono, disjSum_mono_left, Finset.val_covBy_val
instSizeOf 📖CompOp
nodupDecidable 📖CompOp
ofList 📖CompOp
105 mathmath: powersetCardAux_eq_map_coe, Fin.univ_map_def, coe_le, coe_inter, coe_product, revzip_powersetAux, AList.toFinmap_entries, coe_subset, powerset_coe', filterMap_coe, coe_add, coe_toList, coe_subsingletonEquiv, Equiv.Perm.cycleType_eq, antidiagonal_coe', coe_count, mem_coe, coe_bind, coe_eq_zero, Cycle.coe_toMultiset, mem_powersetCardAux, Finset.sort_eq, Fin.univ_def, coe_countP, sup_coe, Nat.uIcc_eq_range', coe_foldl, coe_foldr, coe_ndinter, quot_mk_to_coe, coe_ndinsert, Nat.Ioc_eq_range', coe_sigma, powersetCard_coe, powerset_coe, coe_keys, Nat.Partition.ofComposition_parts, coe_range, lists_coe, coe_nodup, sum_coe, coe_eq_coe, inf_coe, Pi.cons_coe, antidiagonal_coe, coe_ndunion, PrimeMultiset.toPNatMultiset_ofPNatList, Finset.coe_toList, List.toFinset_coe, SimpleGraph.Walk.coe_support_append, Nat.factors_eq, Cycle.lists_coe, coe_sub, quot_mk_to_coe', pairwise_coe_iff, coe_sections, Nat.Ico_eq_range', coe_eq_singleton, powersetAux_eq_map_coe, coe_dedup, Polynomial.roots_list_prod, Nat.factorization_eq_primeFactorsList_multiset, coe_nodupKeys, revzip_powersetAux', coe_sort, List.toFinset_val, sort_eq, Finmap.keys_val, coe_disjoint, coe_fold_l, filter_coe, map_comp_coe, PNat.coeNat_factorMultiset, coe_card, Nat.Icc_eq_range', coe_fold_r, coe_pmap, coe_erase, cons_coe, Nat.val_divisorsAntidiagonal, lift_coe, coe_singleton, Finset.val_univ_fin, pi_coe, List.toFinset_eq, powersetCard_coe', map_coe, coe_reverse, coe_replicate, coe_foldr_swap, FreeRing.coe_eq, prod_coe, replicate_le_coe, mem_powersetAux, pairwise_coe_iff_pairwise, coe_attach, Nat.Ioo_eq_range', SimpleGraph.Walk.coe_support_append', quot_mk_to_coe'', sym2_coe, SimpleGraph.Walk.coe_support, coe_join, Fin.univ_val_map, coe_nil, coe_eq_zero_iff_isEmpty
pmap 📖CompOp
10 mathmath: pmap_eq_map, Nodup.pmap, pmap_congr, card_pmap, map_pmap, pmap_cons, pmap_zero, coe_pmap, mem_pmap, pmap_eq_map_attach
sizeOf 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
card_attach 📖mathematicalcard
Multiset
instMembership
attach
card_pmap
card_le_card 📖mathematicalMultiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
cardleInductionOn
card_lt_card 📖mathematicalMultiset
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
cardlt_of_not_ge
ne_of_lt
eq_of_le_of_card_le
le_of_lt
card_mono 📖mathematicalMonotone
Multiset
PartialOrder.toPreorder
instPartialOrder
Nat.instPreorder
card
card_le_card
card_pmap 📖mathematicalcard
pmap
card_strictMono 📖mathematicalStrictMono
Multiset
PartialOrder.toPreorder
instPartialOrder
Nat.instPreorder
card
card_lt_card
coe_attach 📖mathematicalattach
ofList
coe_card 📖mathematicalcard
ofList
coe_eq_coe 📖mathematicalofListQuotient.eq
coe_le 📖mathematicalMultiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofList
coe_nodup 📖mathematicalNodup
ofList
coe_pmap 📖mathematicalpmap
ofList
coe_reverse 📖mathematicalofList
coe_subset 📖mathematicalMultiset
instHasSubset
ofList
eq_of_le_of_card_le 📖Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
card
leInductionOn
instIsNonstrictStrictOrder 📖mathematicalIsNonstrictStrictOrder
Multiset
instHasSubset
instHasSSubset
instWellFoundedLT 📖mathematicalWellFoundedLT
Multiset
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
card_lt_card
leInductionOn 📖Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofList
le_iff_subset 📖mathematicalNodupMultiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instHasSubset
subset_of_le
List.Nodup.subperm
lift_coe 📖mathematicalofList
mem_attach 📖mathematicalMultiset
instMembership
attach
mem_coe 📖mathematicalMultiset
instMembership
ofList
mem_of_le 📖Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMembership
mem_of_subset
subset_of_le
mem_of_subset 📖Multiset
instHasSubset
instMembership
mem_pmap 📖mathematicalMultiset
instMembership
pmap
nodup_of_le 📖Multiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Nodup
leInductionOn
notMem_mono 📖Multiset
instHasSubset
instMembership
pairwise_coe_iff 📖mathematicalPairwise
ofList
pairwise_coe_iff_pairwise 📖mathematicalSymmetricPairwise
ofList
pmap_congr 📖mathematicalpmap
quot_mk_to_coe 📖mathematicalofList
quot_mk_to_coe' 📖mathematicalofList
quot_mk_to_coe'' 📖mathematicalofList
subset_iff 📖mathematicalMultiset
instHasSubset
instMembership
subset_of_le 📖mathematicalMultiset
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instHasSubset

Multiset.Le

Theorems

NameKindAssumesProvesValidatesDepends On
subset 📖mathematicalMultiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Multiset.instHasSubsetMultiset.subset_of_le

Multiset.Nodup

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖mathematicalMultiset.NodupMultiset
Multiset.instMembership
Quotient.eq

Multiset.Subset

Theorems

NameKindAssumesProvesValidatesDepends On
refl 📖mathematicalMultiset
Multiset.instHasSubset
trans 📖Multiset
Multiset.instHasSubset

---

← Back to Index