Documentation Verification Report

Lemmas

📁 Source: Mathlib/Data/NNRat/Lemmas.lean

Statistics

MetricCount
Definitionsrec
1
Theoremscoe_indicator, den_mul_den_eq_den_mul_gcd, mul_den, mul_num, num_mul_num_eq_num_mul_gcd, toNNRat_div, toNNRat_div', toNNRat_inv
8
Total9

NNRat

Definitions

NameCategoryTheorems
rec 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coe_indicator 📖mathematicalcast
Rat.instNNRatCast
Set.indicator
NNRat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Rat.commRing
map_indicator
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
den_mul_den_eq_den_mul_gcd 📖mathematicalden
NNRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
num
num_coe
Rat.den_mul_den_eq_den_mul_gcd
mul_den 📖mathematicalden
NNRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
num
num_coe
Rat.mul_den
mul_num 📖mathematicalnum
NNRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
den
Nat.cast_mul
num_coe
Int.instCharZero
Rat.mul_num
num_mul_num_eq_num_mul_gcd 📖mathematicalnum
NNRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
den
Nat.cast_mul
num_coe
Int.instCharZero
Rat.num_mul_num_eq_num_mul_gcd

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
toNNRat_div 📖mathematicaltoNNRat
NNRat
NNRat.instDiv
div_eq_mul_inv
toNNRat_inv
toNNRat_mul
toNNRat_div' 📖mathematicaltoNNRat
NNRat
NNRat.instDiv
div_eq_inv_mul
toNNRat_mul
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
toNNRat_inv
toNNRat_inv 📖mathematicaltoNNRat
NNRat
NNRat.instInv
le_total
toNNRat_eq_zero
inv_zero
inv_nonpos
instPosMulMono
coe_toNNRat
NNRat.coe_inv
NNRat.toNNRat_coe

---

← Back to Index