Documentation Verification Report

Bitwise

πŸ“ Source: Mathlib/Data/Nat/Bitwise.lean

Statistics

MetricCount
DefinitionstacticBitwise_assoc_tac
1
Theoremsand_two_pow, append_lt, binaryRec_of_ne_zero, bit_mod_two_eq_one_iff, bit_mod_two_eq_zero_iff, bitwise_bit, bitwise_bit', bitwise_comm, bitwise_eq_binaryRec, bitwise_of_ne_zero, bitwise_swap, bitwise_zero, bitwise_zero_left, bitwise_zero_right, even_xor, exists_most_significant_bit, land_assoc, land_bit, land_comm, ldiff_bit, lor_assoc, lor_bit, lor_comm, lt_of_testBit, lt_xor_cases, shiftLeft_lt, testBit_eq_false_of_lt, testBit_eq_inth, testBit_land, testBit_ldiff, testBit_lor, two_pow_and, xor_bit, xor_cancel_left, xor_cancel_right, xor_eq_zero, xor_mod_two_eq, xor_ne_zero, xor_one_of_even, xor_one_of_odd, xor_range, xor_trichotomy, zero_of_testBit_eq_false
43
Total44

Nat

Definitions

NameCategoryTheorems
tacticBitwise_assoc_tac πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
and_two_pow πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
β€”Decidable.eq_or_ne
MulZeroClass.zero_mul
one_mul
append_lt πŸ“–β€”Monoid.toNatPow
instMonoid
β€”β€”add_comm
shiftLeft_lt
lt_of_lt_of_le
binaryRec_of_ne_zero πŸ“–mathematicalβ€”binaryRec
bit
bodd
div2
bit_bodd_div2
β€”bit_bodd_div2
binaryRec_eq
bodd_bit
div2_bit
bit_mod_two_eq_one_iff πŸ“–mathematicalβ€”bitβ€”bit_mod_two
bit_mod_two_eq_zero_iff πŸ“–mathematicalβ€”bitβ€”bit_mod_two
bitwise_bit πŸ“–mathematicalβ€”bitβ€”instAtLeastTwoHAddOfNat
two_mul
add_comm
zero_add
IsDomain.to_noZeroDivisors
instIsDomain
instCharZero
mul_div_cancel_leftβ‚€
instMulDivCancelClass
bitwise_zero_left
MulZeroClass.mul_zero
bitwise_zero_right
bitwise_bit' πŸ“–mathematicalβ€”bitβ€”bit_ne_zero_iff
div2_bit
two_mul
bitwise_comm πŸ“–β€”β€”β€”β€”bitwise_swap
bitwise_eq_binaryRec πŸ“–mathematicalβ€”binaryRec
bit
β€”bitwise_zero_left
bit_bodd_div2
binaryRec_of_ne_zero
bit_ne_zero_iff
bodd_bit
div2_bit
bitwise_zero_right
bitwise_of_ne_zero
bitwise_of_ne_zero πŸ“–mathematicalβ€”bit
bodd
β€”mod_two_of_bodd
two_mul
bitwise_swap πŸ“–mathematicalβ€”Function.swapβ€”bitwise_zero_left
bitwise_zero_right
bitwise_of_ne_zero
bodd_succ
div_lt_self'
bitwise_zero πŸ“–β€”β€”β€”β€”bitwise_zero_right
bitwise_zero_left πŸ“–β€”β€”β€”β€”β€”
bitwise_zero_right πŸ“–β€”β€”β€”β€”β€”
even_xor πŸ“–mathematicalβ€”Evenβ€”xor_mod_two_eq
exists_most_significant_bit πŸ“–β€”β€”β€”β€”MulZeroClass.mul_zero
zero_add
testBit_bit_zero
testBit_bit_succ
land_assoc πŸ“–β€”β€”β€”β€”land_bit
land_bit πŸ“–mathematicalβ€”bitβ€”bitwise_bit
land_comm πŸ“–β€”β€”β€”β€”bitwise_comm
ldiff_bit πŸ“–mathematicalβ€”ldiff
bit
β€”bitwise_bit
lor_assoc πŸ“–β€”β€”β€”β€”lor_bit
lor_bit πŸ“–mathematicalβ€”bitβ€”bitwise_bit
lor_comm πŸ“–β€”β€”β€”β€”bitwise_comm
lt_of_testBit πŸ“–β€”β€”β€”β€”testBit_bit_succ
testBit_bit_zero
bit_false
bit_true
bit_lt_bit
lt_xor_cases πŸ“–β€”β€”β€”β€”xor_trichotomy
LT.lt.ne
LT.lt.asymm
shiftLeft_lt πŸ“–β€”Monoid.toNatPow
instMonoid
β€”β€”β€”
testBit_eq_false_of_lt πŸ“–β€”Monoid.toNatPow
instMonoid
β€”β€”β€”
testBit_eq_inth πŸ“–mathematicalβ€”List.getI
bits
β€”mod_two_of_bodd
bodd_eq_bits_head
List.getI_zero_eq_headI
bit_bodd_div2
testBit_bit_succ
div2_bits_eq_tail
testBit_land πŸ“–β€”β€”β€”β€”β€”
testBit_ldiff πŸ“–mathematicalβ€”ldiffβ€”β€”
testBit_lor πŸ“–β€”β€”β€”β€”β€”
two_pow_and πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
β€”mul_comm
land_comm
and_two_pow
xor_bit πŸ“–mathematicalβ€”bitβ€”bitwise_bit
xor_cancel_left πŸ“–β€”β€”β€”β€”β€”
xor_cancel_right πŸ“–β€”β€”β€”β€”β€”
xor_eq_zero πŸ“–β€”β€”β€”β€”β€”
xor_mod_two_eq πŸ“–β€”β€”β€”β€”β€”
xor_ne_zero πŸ“–β€”β€”β€”β€”β€”
xor_one_of_even πŸ“–β€”Evenβ€”β€”even_iff
instAtLeastTwoHAddOfNat
bitwise_zero_right
div_two_mul_two_of_even
xor_one_of_odd πŸ“–β€”Odd
instSemiring
β€”β€”not_odd_zero
bitwise_zero_right
xor_range πŸ“–β€”β€”β€”β€”zero_add
xor_one_of_even
even_iff
xor_trichotomy πŸ“–β€”β€”β€”β€”exists_most_significant_bit
Mathlib.Tactic.Contrapose.contrapose₁
Bool.eq_false_eq_not_eq_true
lt_of_testBit
zero_of_testBit_eq_false πŸ“–β€”β€”β€”β€”bit_mod_two
bit_false
testBit_bit_succ

---

← Back to Index