Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/Nat/Cast/Basic.lean

Statistics

MetricCount
DefinitionscastAddMonoidHom, castRingHom, uniqueRingHom, instNatCast, instOfNat
5
TheoremsnatCast, natCast, ext_nat, ext_nat_iff, castRingHom_nat, cast_dvd_cast, cast_id, cast_mul, cast_pow, coe_castAddMonoidHom, coe_castRingHom, ofNat_nsmul_eq_mul, nat_of_neZero, natCast_apply, natCast_def, ofNat_apply, ofNat_def, eq_natCast', elim_natCast_natCast, eq_natCast, eq_natCast', ext_nat, ext_nat'', map_natCast, map_natCast', map_ofNat, map_ofNat', nsmul_eq_mul'
28
Total33

Dvd.dvd

Theorems

NameKindAssumesProvesValidatesDepends On
natCast πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”Nat.cast_dvd_cast

Even

Theorems

NameKindAssumesProvesValidatesDepends On
natCast πŸ“–mathematicalEvenAddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toNatCast
β€”map
AddMonoidHom.instAddMonoidHomClass

MonoidWithZeroHom

Theorems

NameKindAssumesProvesValidatesDepends On
ext_nat πŸ“–β€”DFunLike.coe
MonoidWithZeroHom
Nat.instMulZeroOneClass
funLike
β€”β€”ext_nat''
MonoidWithZeroHomClass.toZeroHomClass
monoidWithZeroHomClass
ext_nat_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Nat.instMulZeroOneClass
funLike
β€”ext_nat

Nat

Definitions

NameCategoryTheorems
castAddMonoidHom πŸ“–CompOp
2 mathmath: coe_castAddMonoidHom, AddSubmonoid.one_eq_mrange
castRingHom πŸ“–CompOp
6 mathmath: castRingHom_nat, RingHom.eq_natCast', coe_castRingHom, Ideal.map_comap_natCastRingHom_int, CharP.quotient_iff_le_ker_natCast, MonoidWithZeroHomClass.ext_nnrat_iff
uniqueRingHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
castRingHom_nat πŸ“–mathematicalβ€”castRingHom
instNonAssocSemiring
RingHom.id
β€”β€”
cast_dvd_cast πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
cast_id πŸ“–β€”β€”β€”β€”β€”
cast_mul πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”MulZeroClass.mul_zero
cast_zero
mul_add
Distrib.leftDistribClass
mul_one
cast_add
cast_one
cast_pow πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Monoid.toNatPow
instMonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_zero
cast_one
pow_succ'
cast_mul
coe_castAddMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddMonoidWithOne.toAddMonoid
AddMonoidHom.instFunLike
castAddMonoidHom
AddMonoidWithOne.toNatCast
β€”β€”
coe_castRingHom πŸ“–mathematicalβ€”DFunLike.coe
RingHom
instNonAssocSemiring
RingHom.instFunLike
castRingHom
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
ofNat_nsmul_eq_mul πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”nsmul_eq_mul

NeZero

Theorems

NameKindAssumesProvesValidatesDepends On
nat_of_neZero πŸ“–mathematicalβ€”MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”of_map
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
map_natCast

Pi

Definitions

NameCategoryTheorems
instNatCast πŸ“–CompOp
41 mathmath: differentiableAt_natCast, derivWithin_natCast, Matrix.diagonal_natCast', differentiableWithinAt_natCast, hasStrictFDerivAt_natCast, MeromorphicOn.divisor_natCast, hasDerivAtFilter_natCast, MeasureTheory.lpNorm_mul_natCast, ModularForm.coe_natCast, BoundedContinuousFunction.coe_natCast, meromorphicOrderAt_const_natCast, MeasureTheory.uniformIntegrable_average_real, differentiable_natCast, EisensteinSeries.finGcdMap_div, natCast_apply, SlashInvariantForm.coe_natCast, hasDerivWithinAt_natCast, fderiv_natCast, Finsupp.card_pi, fwdDiff_iter_eq_factorial, DFinsupp.card_pi, hasFDerivWithinAt_natCast, fderivWithin_natCast, hasDerivAt_natCast, deriv_natCast, MeasureTheory.lpNorm_div_natCast, lp.infty_coeFn_natCast, hasFDerivAt_natCast, ContinuousMap.coe_natCast, Sum.elim_natCast_natCast, Polynomial.fwdDiff_iter_degree_eq_factorial, measurable_natCast, hasStrictDerivAt_natCast, MeasureTheory.lpNorm_natCast_mul, Function.mulSupport_natCast, hasFDerivAtFilter_natCast, differentiableOn_natCast, natCast_def, Module.rankAtStalk_eq_finrank_of_free, Function.support_natCast, natCast_memβ„“p_infty
instOfNat πŸ“–CompOp
2 mathmath: ofNat_def, CartanMatrix.A_diag

Theorems

NameKindAssumesProvesValidatesDepends On
natCast_apply πŸ“–mathematicalβ€”instNatCastβ€”β€”
natCast_def πŸ“–mathematicalβ€”instNatCastβ€”β€”
ofNat_apply πŸ“–β€”β€”β€”β€”β€”
ofNat_def πŸ“–mathematicalβ€”instOfNatβ€”β€”

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
eq_natCast' πŸ“–mathematicalβ€”Nat.castRingHomβ€”ext
eq_natCast
instRingHomClass

Sum

Theorems

NameKindAssumesProvesValidatesDepends On
elim_natCast_natCast πŸ“–mathematicalβ€”Pi.instNatCastβ€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
eq_natCast πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”eq_natCast'
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
eq_natCast' πŸ“–mathematicalDFunLike.coe
AddMonoidWithOne.toOne
AddMonoidWithOne.toNatCastβ€”map_zero
AddMonoidHomClass.toZeroHomClass
Nat.cast_zero
map_add
AddMonoidHomClass.toAddHomClass
Nat.cast_add_one
ext_nat πŸ“–β€”β€”β€”β€”ext_nat'
RingHomClass.toAddMonoidHomClass
eq_natCast
Nat.cast_one
ext_nat'' πŸ“–β€”DFunLike.coeβ€”β€”DFunLike.ext
map_zero
map_natCast πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”map_natCast'
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_natCast' πŸ“–mathematicalDFunLike.coe
AddMonoidWithOne.toOne
AddMonoidWithOne.toNatCastβ€”eq_natCast'
AddMonoidHom.instAddMonoidHomClass
Nat.cast_one
map_ofNat πŸ“–mathematicalβ€”DFunLike.coe
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”map_natCast
map_ofNat' πŸ“–mathematicalDFunLike.coe
AddMonoidWithOne.toOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
β€”map_natCast'
nsmul_eq_mul' πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toNatCast
β€”zero_nsmul
Nat.cast_zero
MulZeroClass.mul_zero
succ_nsmul
Nat.cast_succ
mul_add
Distrib.leftDistribClass
mul_one

---

← Back to Index