Documentation Verification Report

Central

📁 Source: Mathlib/Data/Nat/Choose/Central.lean

Statistics

MetricCount
DefinitionscentralBinom
1
TheoremscentralBinom_eq_two_mul_choose, centralBinom_ne_zero, centralBinom_pos, centralBinom_zero, choose_le_centralBinom, four_pow_le_two_mul_self_mul_centralBinom, four_pow_lt_mul_centralBinom, succ_dvd_centralBinom, succ_mul_centralBinom_succ, two_dvd_centralBinom_of_one_le, two_dvd_centralBinom_succ, two_le_centralBinom
12
Total13

Nat

Definitions

NameCategoryTheorems
centralBinom 📖CompOp
18 mathmath: succ_mul_catalan_eq_centralBinom, four_pow_le_two_mul_self_mul_centralBinom, two_dvd_centralBinom_of_one_le, succ_dvd_centralBinom, factorization_centralBinom_eq_zero_of_two_mul_lt, four_pow_lt_mul_centralBinom, centralBinom_pos, factorization_centralBinom_of_two_mul_self_lt_three_mul, centralBinom_eq_two_mul_choose, two_le_centralBinom, centralBinom_factorization_small, centralBinom_zero, prod_pow_factorization_centralBinom, two_dvd_centralBinom_succ, succ_mul_centralBinom_succ, centralBinom_le_of_no_bertrand_prime, catalan_eq_centralBinom_div, choose_le_centralBinom

Theorems

NameKindAssumesProvesValidatesDepends On
centralBinom_eq_two_mul_choose 📖mathematicalcentralBinom
choose
centralBinom_ne_zero 📖LT.lt.ne'
centralBinom_pos
centralBinom_pos 📖mathematicalcentralBinomchoose_pos
zero_lt_two
instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
centralBinom_zero 📖mathematicalcentralBinomchoose_zero_right
choose_le_centralBinom 📖mathematicalchoose
centralBinom
choose_le_middle
instAtLeastTwoHAddOfNat
zero_lt_two
instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
four_pow_le_two_mul_self_mul_centralBinom 📖mathematicalMonoid.toNatPow
instMonoid
centralBinom
pow_one
mul_one
add_zero
LT.lt.le
four_pow_lt_mul_centralBinom
le_add_self
instCanonicallyOrderedAdd
mul_assoc
zero_lt_two
instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
four_pow_lt_mul_centralBinom 📖mathematicalMonoid.toNatPow
instMonoid
centralBinom
strong_induction_on
lt_trichotomy
not_lt
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit0
add_zero
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
instCharZero
mul_lt_mul_of_pos_left
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
mul_assoc
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.natCast_nonneg
Int.instCharZero
cast_mul
cast_add
cast_one
succ_mul_centralBinom_succ
succ_dvd_centralBinom 📖mathematicalcentralBinominstAtLeastTwoHAddOfNat
two_mul
add_assoc
coprime_add_self_right
coprime_self_add_left
zero_lt_two
instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_assoc
succ_mul_centralBinom_succ
mul_comm
mul_dvd_mul_left
two_dvd_centralBinom_succ
succ_mul_centralBinom_succ 📖mathematicalcentralBinommul_comm
choose_succ_right_eq
choose_mul_succ_eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
instAtLeastTwoHAddOfNat
two_mul
add_assoc
mul_assoc
two_dvd_centralBinom_of_one_le 📖mathematicalcentralBinomtwo_dvd_centralBinom_succ
two_dvd_centralBinom_succ 📖mathematicalcentralBinomcentralBinom_eq_two_mul_choose
instAtLeastTwoHAddOfNat
two_mul
add_assoc
choose_succ_succ'
choose_symm_add
two_le_centralBinom 📖mathematicalcentralBinomchoose_one_right
choose_le_centralBinom

---

← Back to Index