π Source: Mathlib/Data/Nat/Choose/Factorization.lean
factorization_centralBinom_eq_zero_of_two_mul_lt
factorization_centralBinom_of_two_mul_self_lt_three_mul
factorization_choose
factorization_choose'
factorization_choose_eq_zero_of_lt
factorization_choose_le_log
factorization_choose_le_one
factorization_choose_of_lt_three_mul
factorization_choose_prime_pow
factorization_choose_prime_pow_add_factorization
factorization_factorial
factorization_factorial_eq_zero_of_lt
factorization_factorial_le_div_pred
factorization_factorial_mul
factorization_factorial_mul_succ
factorization_le_factorization_choose_add
factorization_le_factorization_of_dvd_right
le_two_mul_of_factorization_centralBinom_pos
multiplicity_choose_aux
pow_factorization_choose_le
prod_pow_factorization_centralBinom
prod_pow_factorization_choose
sub_one_mul_factorization_factorial
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
centralBinom
LE.le.trans
instAtLeastTwoHAddOfNat
two_mul
add_tsub_cancel_left
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_refl
Prime
log
choose
Finset.card
Finset.filter
Monoid.toNatPow
instMonoid
Finset.Ico
instPreorder
instLocallyFiniteOrder
choose_mul_factorial_mul_factorial
add_tsub_cancel_right
Pi.add_apply
Finsupp.coe_add
factorization_mul
choose_pos
ne_of_gt
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
factorial_pos
mul_assoc
factorial_ne_zero
LE.le.trans_lt
log_mono_right
add_comm
Finset.sum_congr
Finset.filter.congr_simp
choose_eq_zero_of_lt
factorization_zero
choose_eq_factorial_div_factorial
instCanonicallyOrderedAdd
factorization_div
factorial_mul_factorial_dvd_factorial
Finsupp.coe_tsub
Pi.sub_apply
zero_tsub
Not.imp_symm
factorization_eq_zero_of_not_prime
le_of_not_gt
LE.le.trans_eq
Finset.card_filter_le
card_Ico
eq_or_ne
log_zero_right
log_lt_of_lt_pow
em'
lt_or_ge
eq_or_lt_of_le
pow_one
add_lt_add_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
add_add_add_comm
lt_of_le_of_lt
add_le_add_left
covariant_swap_add_of_covariant_add
le_mul_of_one_le_right'
instMulLeftMono
Prime.pos
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
lt_of_le_of_ne
Prime.two_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
sq
pow_right_monoβ
instZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
LT.lt.le
Prime.one_lt
tsub_le_self
le_antisymm
instNoMaxOrder
zero_add
pow_pos
factorization_eq_card_pow_dvd_of_lt
Ne.bot_lt
log_pow
Finset.card_union_of_disjoint
Finset.filter_union_right
factorization_pow_self
factorial
Finset.sum
instAddCommMonoid
factorization_one
Finset.sum_const_zero
factorial_succ
AddRightCancelSemigroup.toIsRightCancelAdd
lt_pow_of_log_lt
Finset.sum_add_distrib
Finset.sum_boole
add_zero
factorization_eq_zero_of_lt
geom_sum_Ico_le
MulZeroClass.mul_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
cast_mul
cast_add
cast_one
factorization_eq_zero_of_not_dvd
Finset.mem_Ico
Finset.prod_Ico_id_eq_factorial
factorization_prod_apply
ne_zero_of_lt
Finset.sum_Ico_consecutive
add_assoc
Finset.sum_Ico_succ_top
Prime.factorization_self
add_one_mul_choose_eq
dvd_mul_right
Right.add_pos_of_nonneg_of_pos
zero_le
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
pos_iff_ne_zero
pow_le_of_le_log
LT.lt.ne'
Finset.prod
instCommMonoid
Finset.range
factorization_prod_pow_eq_self
choose_ne_zero
Finset.prod_subset
Finset.mem_range
Mathlib.Tactic.Contrapose.contraposeβ
Finsupp.mem_support_iff
pow_zero
digits
Finset.sum_Ico_add'
instIsOrderedCancelAddMonoid
Ico_zero_eq_range
---
β Back to Index