Documentation Verification Report

Factorization

πŸ“ Source: Mathlib/Data/Nat/Choose/Factorization.lean

Statistics

MetricCount
Definitions0
Theoremsfactorization_centralBinom_eq_zero_of_two_mul_lt, factorization_centralBinom_of_two_mul_self_lt_three_mul, factorization_choose, factorization_choose', factorization_choose_eq_zero_of_lt, factorization_choose_le_log, factorization_choose_le_one, factorization_choose_of_lt_three_mul, factorization_choose_prime_pow, factorization_choose_prime_pow_add_factorization, factorization_factorial, factorization_factorial_eq_zero_of_lt, factorization_factorial_le_div_pred, factorization_factorial_mul, factorization_factorial_mul_succ, factorization_le_factorization_choose_add, factorization_le_factorization_of_dvd_right, le_two_mul_of_factorization_centralBinom_pos, multiplicity_choose_aux, pow_factorization_choose_le, prod_pow_factorization_centralBinom, prod_pow_factorization_choose, sub_one_mul_factorization_factorial
23
Total23

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
factorization_centralBinom_eq_zero_of_two_mul_lt πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
centralBinom
β€”factorization_choose_eq_zero_of_lt
factorization_centralBinom_of_two_mul_self_lt_three_mul πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
centralBinom
β€”factorization_choose_of_lt_three_mul
LE.le.trans
instAtLeastTwoHAddOfNat
two_mul
add_tsub_cancel_left
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_refl
factorization_choose πŸ“–mathematicalPrime
log
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
Finset.card
Finset.filter
Monoid.toNatPow
instMonoid
Finset.Ico
instPreorder
instLocallyFiniteOrder
β€”factorization_choose'
factorization_choose' πŸ“–mathematicalPrime
log
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
Finset.card
Finset.filter
Monoid.toNatPow
instMonoid
Finset.Ico
instPreorder
instLocallyFiniteOrder
β€”choose_mul_factorial_mul_factorial
add_tsub_cancel_right
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Pi.add_apply
Finsupp.coe_add
factorization_mul
choose_pos
ne_of_gt
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
factorial_pos
mul_assoc
factorization_factorial
factorial_ne_zero
LE.le.trans_lt
log_mono_right
add_comm
multiplicity_choose_aux
Finset.sum_congr
Finset.filter.congr_simp
factorization_choose_eq_zero_of_lt πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
β€”choose_eq_zero_of_lt
factorization_zero
choose_eq_factorial_div_factorial
instCanonicallyOrderedAdd
instOrderedSub
factorization_div
factorial_mul_factorial_dvd_factorial
Finsupp.coe_tsub
Pi.sub_apply
factorization_factorial_eq_zero_of_lt
zero_tsub
factorization_choose_le_log πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
log
β€”instCanonicallyOrderedAdd
Not.imp_symm
factorization_eq_zero_of_not_prime
le_of_not_gt
choose_eq_zero_of_lt
factorization_zero
factorization_choose
LE.le.trans_eq
Finset.card_filter_le
card_Ico
factorization_choose_le_one πŸ“–mathematicalMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
β€”LE.le.trans
factorization_choose_le_log
eq_or_ne
log_zero_right
instCanonicallyOrderedAdd
log_lt_of_lt_pow
factorization_choose_of_lt_three_mul πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
β€”em'
factorization_eq_zero_of_not_prime
lt_or_ge
choose_eq_zero_of_lt
factorization_zero
factorization_choose
eq_or_lt_of_le
pow_one
add_lt_add_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
instAtLeastTwoHAddOfNat
two_mul
add_add_add_comm
lt_of_le_of_lt
add_le_add_left
covariant_swap_add_of_covariant_add
le_mul_of_one_le_right'
instMulLeftMono
Prime.pos
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
instOrderedSub
lt_of_le_of_ne
Prime.two_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
sq
pow_right_monoβ‚€
instZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
LT.lt.le
Prime.one_lt
tsub_le_self
factorization_choose_prime_pow πŸ“–mathematicalPrime
Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
β€”factorization_choose_prime_pow_add_factorization
factorization_choose_prime_pow_add_factorization πŸ“–mathematicalPrime
Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
β€”le_antisymm
Finset.filter.congr_simp
instNoMaxOrder
zero_add
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
instZeroLEOneClass
Prime.pos
factorization_choose
factorization_eq_card_pow_dvd_of_lt
Ne.bot_lt
lt_of_le_of_lt
Prime.one_lt
log_pow
Finset.card_union_of_disjoint
Finset.filter_union_right
Finset.card_filter_le
card_Ico
factorization_pow_self
factorization_le_factorization_choose_add
factorization_factorial πŸ“–mathematicalPrime
log
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
factorial
Finset.sum
instAddCommMonoid
Finset.Ico
instPreorder
instLocallyFiniteOrder
Monoid.toNatPow
instMonoid
β€”factorization_one
Finset.sum_congr
Finset.sum_const_zero
factorial_succ
factorization_mul
factorial_ne_zero
Finsupp.coe_add
Pi.add_apply
LE.le.trans_lt
log_mono_right
AddRightCancelSemigroup.toIsRightCancelAdd
factorization_eq_card_pow_dvd_of_lt
lt_pow_of_log_lt
Prime.one_lt
Finset.sum_add_distrib
Finset.sum_boole
factorization_factorial_eq_zero_of_lt πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
factorial
β€”factorization_one
factorial_succ
factorization_mul
factorial_ne_zero
Finsupp.coe_add
Pi.add_apply
add_zero
factorization_eq_zero_of_lt
factorization_factorial_le_div_pred πŸ“–mathematicalPrimeDFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
factorial
β€”factorization_factorial
geom_sum_Ico_le
Prime.two_le
factorization_factorial_mul πŸ“–mathematicalPrimeDFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
factorial
β€”MulZeroClass.mul_zero
factorization_one
add_zero
factorization_factorial_mul_succ
factorization_mul
factorial_ne_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
factorization_factorial_mul_succ πŸ“–mathematicalPrimeDFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
factorial
β€”Prime.two_le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
cast_mul
cast_add
cast_one
factorization_eq_zero_of_not_dvd
Finset.mem_Ico
Finset.prod_Ico_id_eq_factorial
factorization_prod_apply
ne_zero_of_lt
Finset.sum_Ico_consecutive
add_assoc
Finset.sum_Ico_succ_top
factorization_mul
Finsupp.coe_add
Pi.add_apply
Prime.factorization_self
Finset.sum_congr
Finset.sum_const_zero
zero_add
add_comm
factorization_le_factorization_choose_add πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
β€”factorization_zero
zero_add
instCanonicallyOrderedAdd
Pi.add_apply
Finsupp.coe_add
factorization_mul
choose_pos
factorization_le_factorization_of_dvd_right
add_one_mul_choose_eq
dvd_mul_right
ne_of_gt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
zero_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
factorization_le_factorization_of_dvd_right πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_mul
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
instCanonicallyOrderedAdd
le_two_mul_of_factorization_centralBinom_pos πŸ“–β€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
centralBinom
β€”β€”le_of_not_gt
pos_iff_ne_zero
instCanonicallyOrderedAdd
factorization_centralBinom_eq_zero_of_two_mul_lt
multiplicity_choose_aux πŸ“–mathematicalPrimeFinset.sum
instAddCommMonoid
Finset.Ico
instPreorder
instLocallyFiniteOrder
Monoid.toNatPow
instMonoid
Finset.card
Finset.filter
β€”Finset.sum_congr
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instOrderedSub
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
instZeroLEOneClass
Prime.pos
Finset.sum_add_distrib
Finset.sum_boole
pow_factorization_choose_le πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
β€”pow_le_of_le_log
LT.lt.ne'
factorization_choose_le_log
prod_pow_factorization_centralBinom πŸ“–mathematicalβ€”Finset.prod
instCommMonoid
Finset.range
Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
centralBinom
β€”prod_pow_factorization_choose
prod_pow_factorization_choose πŸ“–mathematicalβ€”Finset.prod
instCommMonoid
Finset.range
Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
choose
β€”factorization_prod_pow_eq_self
choose_ne_zero
Finset.prod_subset
Finset.mem_range
Mathlib.Tactic.Contrapose.contrapose₁
Finsupp.mem_support_iff
factorization_choose_eq_zero_of_lt
pow_zero
sub_one_mul_factorization_factorial πŸ“–mathematicalPrimeDFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
factorial
digits
β€”factorization_factorial
Finset.sum_Ico_add'
instIsOrderedCancelAddMonoid
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
Finset.sum_congr
Ico_zero_eq_range

---

← Back to Index