Documentation Verification Report

Multinomial

📁 Source: Mathlib/Data/Nat/Choose/Multinomial.lean

Statistics

MetricCount
Definitionsmultinomial, multinomial, multinomial
3
Theoremssum_pow, sum_pow_eq_sum_piAntidiag, sum_pow_eq_sum_piAntidiag_of_commute, sum_pow_of_commute, multinomial_eq, multinomial_eq_of_support_subset, multinomial_update, multinomial_filter_ne, multinomial_zero, binomial_eq, binomial_eq_choose, binomial_one, binomial_spec, binomial_succ_succ, multinomial_congr, multinomial_cons, multinomial_empty, multinomial_insert, multinomial_insert_one, multinomial_pos, multinomial_singleton, multinomial_spec, multinomial_two_mul_le_mul_multinomial, multinomial_univ_three, multinomial_univ_two, succ_mul_binomial, multinomial_coe_fill_of_notMem
27
Total30

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
sum_pow 📖mathematicalMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Sym
sym
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Multiset.multinomial
Multiset
Multiset.card
Multiset.prod
CommSemiring.toCommMonoid
Multiset.map
sum_coe_sort
Multiset.map_set_pairwise
Set.Pairwise.mono
mem_sym_iff
Commute.all
sum_congr
Multiset.noncommProd_eq_prod
sum_pow_of_commute
sum_pow_eq_sum_piAntidiag 📖mathematicalMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
piAntidiag
Nat.instAddCommMonoid
Nat.instHasAntidiagonal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.multinomial
prod
CommSemiring.toCommMonoid
Commute.all
sum_congr
Set.Pairwise.mono'
Commute.pow_pow
sum_pow_eq_sum_piAntidiag_of_commute
sum_pow_eq_sum_piAntidiag_of_commute 📖mathematicalSet.Pairwise
SetLike.coe
Finset
instSetLike
Function.onFun
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Monoid.toNatPow
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
piAntidiag
Nat.instAddCommMonoid
Nat.instHasAntidiagonal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.multinomial
noncommProd
Set.Pairwise.mono'
Commute.pow_pow
cons_induction
Set.Pairwise.mono'
Commute.pow_pow
pow_zero
sum_congr
piAntidiag_zero
Nat.instCanonicallyOrderedAdd
Nat.multinomial_empty
Nat.cast_one
mul_one
sum_const
card_singleton
nsmul_eq_mul
zero_pow
piAntidiag_empty_of_ne_zero
zero_nsmul
sum_cons
Pi.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
pairwiseDisjoint_piAntidiag_map_addRightEmbedding
piAntidiag_cons
sum_disjiUnion
Set.Pairwise.mono
mem_cons
Nat.multinomial_cons
Nat.cast_mul
noncommProd_cons
sum_map
sum_add_distrib
sum_ite_eq'
add_zero
noncommProd_congr
cons_eq_insert
coe_insert
not_imp_comm
mem_piAntidiag
zero_add
HasAntidiagonal.mem_antidiagonal
Nat.multinomial_congr
Pi.add_apply
Commute.add_pow
Commute.sum_right
mul_sum
sum_mul
Nat.cast_comm
Commute.left_comm
Nat.commute_cast
mul_assoc
sum_pow_of_commute 📖mathematicalSet.Pairwise
SetLike.coe
Finset
instSetLike
Function.onFun
Commute
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Monoid.toNatPow
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Sym
SetLike.instMembership
sym
univ
Subtype.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Multiset.multinomial
Multiset
Multiset.card
Multiset.noncommProd
Multiset.map
Multiset.map_set_pairwise
Set.Pairwise.mono
Multiset.instMembership
val
setOf
instMembership
mem_sym_iff
induction
Multiset.map_set_pairwise
Set.Pairwise.mono
mem_sym_iff
sum_empty
pow_zero
Unique.instSubsingleton
Fintype.sum_subsingleton
instSubsingletonSubtype_mathlib
Multiset.multinomial_zero
Nat.cast_one
one_mul
pow_succ
MulZeroClass.mul_zero
Fintype.sum_empty
instIsEmpty
sum_insert
Commute.add_pow
Commute.sum_right
mem_insert_self
mem_insert_of_mem
sum_range
subset_insert
sum_congr
mul_sum
sum_mul
sum_sigma'
Fintype.sum_equiv
Multiset.multinomial_filter_ne
Multiset.filter_add_not
Multiset.map_add
Multiset.noncommProd.congr_simp
Multiset.subset_of_le
Multiset.le_add_right
Multiset.le_add_left
Multiset.noncommProd_add
Multiset.map_congr
Multiset.filter_eq
Multiset.map_replicate
Multiset.noncommProd_eq_pow_card
Multiset.eq_of_mem_replicate
Multiset.card_replicate
Nat.cast_mul
mul_assoc
Nat.cast_comm

Finsupp

Definitions

NameCategoryTheorems
multinomial 📖CompOp
3 mathmath: multinomial_eq_of_support_subset, multinomial_update, multinomial_eq

Theorems

NameKindAssumesProvesValidatesDepends On
multinomial_eq 📖mathematicalmultinomial
Nat.multinomial
support
MulZeroClass.toZero
Nat.instMulZeroClass
DFunLike.coe
Finsupp
instFunLike
multinomial_eq_of_support_subset 📖mathematicalFinset
Finset.instHasSubset
support
MulZeroClass.toZero
Nat.instMulZeroClass
multinomial
Nat.multinomial
DFunLike.coe
Finsupp
instFunLike
Finset.sum_subset
Finset.prod_subset
multinomial_update 📖mathematicalmultinomial
Nat.choose
sum
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.instAddCommMonoid
DFunLike.coe
Finsupp
instFunLike
update
Finset.insert_erase
Nat.multinomial_insert
Finset.notMem_erase
Finset.add_sum_erase
support_update_zero
Nat.multinomial_congr
Function.update_of_ne
Finset.mem_erase
notMem_support_iff
Nat.choose_zero_right
one_mul
update_self

Multiset

Definitions

NameCategoryTheorems
multinomial 📖CompOp
7 mathmath: multinomial_filter_ne, norm_iteratedFDerivWithin_prod_le, Finset.sum_pow_of_commute, multinomial_zero, norm_iteratedFDeriv_prod_le, Sym.multinomial_coe_fill_of_notMem, Finset.sum_pow

Theorems

NameKindAssumesProvesValidatesDepends On
multinomial_filter_ne 📖mathematicalmultinomial
Nat.choose
card
count
filter
Finsupp.card_toMultiset
toFinsupp_toMultiset
Finsupp.ext
toFinsupp_apply
count_filter
Finsupp.coe_update
Function.update_of_ne
not_ne_iff
Function.update_self
Finsupp.multinomial_update
multinomial_zero 📖mathematicalmultinomial
Multiset
instZero
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
Nat.instZeroLEOneClass

Nat

Definitions

NameCategoryTheorems
multinomial 📖CompOp
22 mathmath: Finset.sum_pow_eq_sum_piAntidiag, binomial_succ_succ, multinomial_univ_two, Finsupp.multinomial_eq_of_support_subset, binomial_one, multinomial_spec, Finsupp.multinomial_eq, Finset.sum_pow_eq_sum_piAntidiag_of_commute, multinomial_cons, multinomial_insert_one, multinomial_two_mul_le_mul_multinomial, multinomial_singleton, multinomial_congr, multinomial_insert, multinomial_empty, binomial_spec, DividedPowers.prod_dpow, succ_mul_binomial, binomial_eq_choose, binomial_eq, multinomial_pos, multinomial_univ_three

Theorems

NameKindAssumesProvesValidatesDepends On
binomial_eq 📖mathematicalmultinomial
Finset
Finset.instInsert
Finset.instSingleton
factorial
Finset.sum_pair
Finset.prod_pair
binomial_eq_choose 📖mathematicalmultinomial
Finset
Finset.instInsert
Finset.instSingleton
choose
binomial_eq
choose_eq_factorial_div_factorial
add_tsub_cancel_left
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
binomial_one 📖mathematicalmultinomial
Finset
Finset.instInsert
Finset.instSingleton
multinomial_insert_one
Finset.sum_singleton
multinomial_singleton
mul_one
binomial_spec 📖mathematicalfactorial
multinomial
Finset
Finset.instInsert
Finset.instSingleton
Finset.prod_pair
Finset.sum_pair
multinomial_spec
binomial_succ_succ 📖mathematicalmultinomial
Finset
Finset.instInsert
Finset.instSingleton
Function.update
binomial_eq_choose
Function.update_apply
choose_succ_succ
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
multinomial_congr 📖mathematicalmultinomialFinset.sum_congr
Finset.prod_congr
multinomial_cons 📖mathematicalFinset
Finset.instMembership
multinomial
Finset.cons
choose
Finset.sum
instAddCommMonoid
multinomial.eq_1
Finset.prod_pos
instZeroLEOneClass
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
instNontrivial
factorial_pos
prod_factorial_dvd_factorial_sum
Finset.prod_cons
mul_assoc
mul_left_comm
choose_symm_add
add_choose_mul_factorial_mul_factorial
Finset.sum_cons
multinomial_empty 📖mathematicalmultinomial
Finset
Finset.instEmptyCollection
instZeroLEOneClass
multinomial_insert 📖mathematicalFinset
Finset.instMembership
multinomial
Finset.instInsert
choose
Finset.sum
instAddCommMonoid
Finset.cons_eq_insert
multinomial_cons
multinomial_insert_one 📖mathematicalFinset
Finset.instMembership
multinomial
Finset.instInsert
Finset.sum
instAddCommMonoid
Finset.sum_insert
Finset.prod_insert
add_comm
factorial_succ
zero_add
mul_one
one_mul
prod_factorial_dvd_factorial_sum
multinomial_pos 📖mathematicalmultinomialfactorial_pos
prod_factorial_dvd_factorial_sum
prod_factorial_pos
multinomial_singleton 📖mathematicalmultinomial
Finset
Finset.instSingleton
Finset.notMem_empty
Finset.cons_empty
multinomial_cons
add_zero
choose_self
multinomial_empty
mul_one
multinomial_spec 📖mathematicalFinset.prod
instCommMonoid
factorial
multinomial
Finset.sum
instAddCommMonoid
prod_factorial_dvd_factorial_sum
multinomial_two_mul_le_mul_multinomial 📖mathematicalmultinomial
Monoid.toNatPow
instMonoid
Finset.sum
instAddCommMonoid
multinomial.eq_1
Finset.mul_sum
prod_factorial_dvd_factorial_sum
ne_of_gt
Finset.prod_pos
instZeroLEOneClass
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
instNontrivial
factorial_pos
Dvd.dvd.trans
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
instMulLeftMono
factorial_two_mul_le
mul_pow
Finset.prod_pow_eq_pow_sum
Finset.prod_mul_distrib
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
mul_le_mul_right
Finset.prod_le_prod
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
le_of_lt
mul_pos
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
doubleFactorial_two_mul
doubleFactorial_le_factorial
multinomial_univ_three 📖mathematicalmultinomial
Finset.univ
Fin.fintype
Matrix.vecCons
Matrix.vecEmpty
factorial
multinomial.eq_1
Fin.sum_univ_three
Fin.prod_univ_three
multinomial_univ_two 📖mathematicalmultinomial
Finset.univ
Fin.fintype
Matrix.vecCons
Matrix.vecEmpty
factorial
multinomial.eq_1
Fin.sum_univ_two
Fin.prod_univ_two
succ_mul_binomial 📖mathematicalmultinomial
Finset
Finset.instInsert
Finset.instSingleton
Function.update
binomial_eq_choose
mul_comm
Function.update_self
Function.update_of_ne
add_one_mul_choose_eq

Sym

Theorems

NameKindAssumesProvesValidatesDepends On
multinomial_coe_fill_of_notMem 📖mathematicalSym
instMembership
Multiset.multinomial
toMultiset
fill
Nat.choose
Multiset.multinomial_filter_ne
card_coe
count_coe_fill_self_of_notMem
mem_coe
coe_fill
coe_replicate
Multiset.filter_add
Multiset.filter_eq_self
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
Multiset.filter_eq_nil
Multiset.mem_replicate

---

← Back to Index