Documentation Verification Report

Sum

πŸ“ Source: Mathlib/Data/Nat/Choose/Sum.lean

Statistics

MetricCount
Definitions0
Theoremsadd_pow, add_pow', prod_antidiagonal_pow_choose_succ, prod_pow_choose_succ, sum_antidiagonal_choose_add, sum_antidiagonal_choose_succ_mul, sum_antidiagonal_choose_succ_nsmul, sum_choose_succ_mul, sum_choose_succ_nsmul, sum_powerset_apply_card, sum_powerset_neg_one_pow_card, sum_powerset_neg_one_pow_card_of_nonempty, alternating_sum_range_choose, alternating_sum_range_choose_eq_choose, alternating_sum_range_choose_of_ne, choose_middle_le_pow, four_pow_le_two_mul_add_one_mul_central_binom, sum_Icc_choose, sum_range_add_choose, sum_range_choose, sum_range_choose_halfway, sum_range_mul_choose, sum_range_multichoose, add_pow, sub_pow
25
Total25

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
add_pow πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.choose
β€”pow_zero
tsub_zero
Nat.instOrderedSub
one_mul
Nat.choose_zero_right
Nat.cast_one
mul_one
Nat.choose_succ_self
Nat.cast_zero
MulZeroClass.mul_zero
Finset.mem_range
Nat.choose_succ_succ
Nat.cast_add
mul_add
Distrib.leftDistribClass
pow_succ'
mul_assoc
eq
pow_right
symm
lt_of_le_of_ne
Finset.sum_range_succ
Finset.range_zero
Finset.sum_empty
zero_add
Nat.choose_self
Finset.sum_range_succ'
Finset.sum_congr
Finset.sum_add_distrib
add_assoc
add_mul
Distrib.rightDistribClass
Finset.mul_sum
add_zero
add_pow' πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Finset.Nat.instHasAntidiagonal
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.choose
β€”Finset.Nat.sum_antidiagonal_eq_sum_range_succ
Finset.sum_congr
nsmul_eq_mul
Nat.cast_comm
add_pow

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
prod_antidiagonal_pow_choose_succ πŸ“–mathematicalβ€”prod
HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Nat.instHasAntidiagonal
Monoid.toNatPow
CommMonoid.toMonoid
Nat.choose
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”prod_congr
prod_pow_choose_succ
Nat.instNoMaxOrder
tsub_add_eq_add_tsub
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.choose_symm
prod_pow_choose_succ πŸ“–mathematicalβ€”prod
range
Monoid.toNatPow
CommMonoid.toMonoid
Nat.choose
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”prod_range_succ
prod_range_succ'
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Nat.choose_succ_self
pow_zero
mul_one
prod_congr
tsub_zero
Nat.choose_zero_right
pow_one
pow_add
prod_mul_distrib
mul_assoc
mul_comm
sum_antidiagonal_choose_add πŸ“–mathematicalβ€”sum
Nat.instAddCommMonoid
HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Nat.instHasAntidiagonal
Nat.choose
β€”sum_congr
antidiagonal_zero
Nat.instCanonicallyOrderedAdd
sum_singleton
add_zero
Nat.choose_self
Nat.sum_antidiagonal_succ
Nat.choose_succ_succ
add_assoc
sum_antidiagonal_choose_succ_mul πŸ“–mathematicalβ€”sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Nat.instHasAntidiagonal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.choose
Distrib.toAdd
β€”sum_congr
nsmul_eq_mul
sum_antidiagonal_choose_succ_nsmul
sum_antidiagonal_choose_succ_nsmul πŸ“–mathematicalβ€”sum
HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Nat.instHasAntidiagonal
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Nat.choose
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”sum_congr
sum_choose_succ_nsmul
mem_range
Order.lt_add_one_iff
Nat.instNoMaxOrder
tsub_add_eq_add_tsub
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.choose_symm
sum_choose_succ_mul πŸ“–mathematicalβ€”sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.choose
Distrib.toAdd
β€”sum_congr
nsmul_eq_mul
sum_choose_succ_nsmul
sum_choose_succ_nsmul πŸ“–mathematicalβ€”sum
range
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Nat.choose
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”sum_range_succ
sum_range_succ'
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Nat.choose_succ_self
zero_nsmul
add_zero
sum_congr
tsub_zero
Nat.choose_zero_right
one_nsmul
add_nsmul
sum_add_distrib
add_assoc
add_comm
sum_powerset_apply_card πŸ“–mathematicalβ€”sum
Finset
powerset
card
range
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Nat.choose
β€”sum_fiberwise_of_maps_to
mem_range
card_le_card
mem_powerset
sum_congr
card_powersetCard
sum_const
powersetCard_eq_filter
mem_powersetCard
sum_powerset_neg_one_pow_card πŸ“–mathematicalβ€”sum
Finset
Int.instAddCommMonoid
powerset
Monoid.toNatPow
Int.instMonoid
card
instEmptyCollection
decidableEq
β€”sum_powerset_apply_card
sum_congr
nsmul_eq_mul'
Int.alternating_sum_range_choose
sum_powerset_neg_one_pow_card_of_nonempty πŸ“–mathematicalNonemptysum
Finset
Int.instAddCommMonoid
powerset
Monoid.toNatPow
Int.instMonoid
card
β€”sum_powerset_neg_one_pow_card
nonempty_iff_ne_empty

Int

Theorems

NameKindAssumesProvesValidatesDepends On
alternating_sum_range_choose πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
Monoid.toNatPow
instMonoid
Nat.choose
β€”Finset.sum_congr
zero_add
Finset.sum_singleton
pow_zero
Nat.choose_self
Nat.cast_one
mul_one
alternating_sum_range_choose_eq_choose
Nat.choose_succ_self
Nat.cast_zero
MulZeroClass.mul_zero
alternating_sum_range_choose_eq_choose πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
Monoid.toNatPow
instMonoid
Nat.choose
β€”Finset.sum_congr
zero_add
Finset.sum_singleton
pow_zero
Nat.choose_zero_right
Nat.cast_one
mul_one
Finset.sum_range_succ
Nat.choose_succ_succ
alternating_sum_range_choose_of_ne πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
Monoid.toNatPow
instMonoid
Nat.choose
β€”alternating_sum_range_choose

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
choose_middle_le_pow πŸ“–mathematicalβ€”choose
Monoid.toNatPow
instMonoid
β€”Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finset.self_mem_range_succ
sum_range_choose_halfway
four_pow_le_two_mul_add_one_mul_central_binom πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
choose
β€”pow_mul
add_pow
Finset.sum_congr
one_pow
mul_one
one_mul
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
choose_le_middle
instAtLeastTwoHAddOfNat
mul_div_cancel_leftβ‚€
instMulDivCancelClass
instCharZero
Finset.sum_const
Finset.card_range
nsmul_eq_mul
cast_add
cast_mul
cast_one
sum_Icc_choose πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.Icc
instPreorder
instLocallyFiniteOrder
choose
β€”lt_or_ge
choose_eq_zero_of_lt
Finset.Icc_eq_empty_of_lt
Finset.sum_empty
le_induction
Finset.sum_congr
Finset.Icc_self
Finset.sum_singleton
choose_self
Finset.Ico_insert_right
Finset.sum_insert
Finset.Ico_add_one_right_eq_Icc
instNoMaxOrder
choose_succ_succ'
sum_range_add_choose πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
choose
β€”sum_Icc_choose
Finset.range_eq_Ico
AddRightCancelSemigroup.toIsRightCancelAdd
Finset.sum_congr
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
instIsOrderedCancelAddMonoid
Finset.map_add_right_Ico
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
zero_add
add_right_comm
Finset.Ico_add_one_right_eq_Icc
instNoMaxOrder
Finset.sum_map
sum_range_choose πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
choose
Monoid.toNatPow
instMonoid
β€”add_pow
instAtLeastTwoHAddOfNat
Finset.sum_congr
one_pow
mul_one
one_mul
one_add_one_eq_two
sum_range_choose_halfway πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
choose
Monoid.toNatPow
instMonoid
β€”Finset.sum_congr
choose_symm
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.natCast_nonneg
cast_add
cast_mul
cast_one
Finset.mem_range
mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
two_ne_zero
two_mul
Finset.range_eq_Ico
Finset.sum_Ico_reflect
Finset.sum_range_add_sum_Ico
sum_range_choose
pow_succ
pow_mul
mul_comm
sum_range_mul_choose πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
choose
Monoid.toNatPow
instMonoid
β€”Finset.sum_congr
zero_add
Finset.sum_singleton
choose_self
mul_one
zero_tsub
instCanonicallyOrderedAdd
instOrderedSub
pow_zero
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
two_ne_zero
instAtLeastTwoHAddOfNat
two_mul
Finset.sum_flip
choose_symm
Finset.mem_range_succ_iff
Finset.sum_add_distrib
add_mul
Distrib.rightDistribClass
Finset.mul_sum
sum_range_choose
mul_assoc
mul_comm
mul_pow_sub_one
sum_range_multichoose πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
multichoose
choose
β€”Finset.sum_range_succ'
Finset.sum_congr
multichoose_zero_succ
Finset.sum_const_zero
multichoose_zero_right
zero_add
add_zero
choose_zero_right

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
add_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.range
Distrib.toMul
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.choose
β€”Commute.add_pow
Commute.all
sub_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
Nat.choose
β€”sub_eq_add_neg
add_pow
Finset.sum_congr
Finset.mem_range
pow_add
Even.neg_pow
Distrib.rightDistribClass
Nat.instAtLeastTwoHAddOfNat
one_pow
mul_one
neg_pow
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add

---

← Back to Index