Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Data/Nat/Digits/Lemmas.lean

Statistics

MetricCount
DefinitionsconsFixedLengthDigits, fixedLengthDigits, digitsAppend
3
Theoremscard_fixedLengthDigits, consFixedLengthDigits_head, cons_mem_fixedLengthDigits_succ, fixedLengthDigits_one, fixedLengthDigits_succ_eq_disjiUnion, fixedLengthDigits_zero, mem_fixedLengthDigits_iff, ne_empty_of_mem_consFixedLengthDigits, pairwiseDisjoint_consFixedLengthDigits, sum_fixedLengthDigits_sum, base_pow_length_digits_le, base_pow_length_digits_le', bijOn_digitsAppend, bijOn_digitsAppend', bijOn_ofDigits, bijOn_ofDigits', digits_append_digits, digits_append_zeroes_append_digits, digits_len, digits_len_le_digits_len_succ, digits_length_le_iff, digits_two_eq_bits, dvd_ofDigits_sub_ofDigits, getD_digits, getLast_digit_ne_zero, head!_digits, injOn_ofDigits, le_digits_len_le, length_digitsAppend, lt_digits_length_iff, lt_of_mem_digitsAppend, mapsTo_digitsAppend, mapsTo_ofDigits, modEq_digits_sum, ofDigits_eq_sum_mapIdx, ofDigits_eq_sum_mapIdx_aux, ofDigits_mod, ofDigits_modEq, ofDigits_modEq', ofDigits_mod_eq_head!, ofDigits_neg_one, ofDigits_zmod, ofDigits_zmodeq, ofDigits_zmodeq', pow_length_le_mul_ofDigits, setInvOn_digitsAppend_ofDigits, sub_one_mul_sum_div_pow_eq_sub_sum_digits, sub_one_mul_sum_log_div_pow_eq_sub_sum_digits, sum_digits_ofDigits_eq_sum, sum_sum_digits_eq, zmodeq_ofDigits_digits
51
Total54

List

Definitions

NameCategoryTheorems
consFixedLengthDigits πŸ“–CompOp
2 mathmath: fixedLengthDigits_succ_eq_disjiUnion, pairwiseDisjoint_consFixedLengthDigits
fixedLengthDigits πŸ“–CompOp
8 mathmath: Nat.bijOn_digitsAppend', card_fixedLengthDigits, fixedLengthDigits_succ_eq_disjiUnion, fixedLengthDigits_one, Nat.bijOn_ofDigits', fixedLengthDigits_zero, sum_fixedLengthDigits_sum, mem_fixedLengthDigits_iff

Theorems

NameKindAssumesProvesValidatesDepends On
card_fixedLengthDigits πŸ“–mathematicalβ€”Finset.card
fixedLengthDigits
Monoid.toNatPow
Nat.instMonoid
β€”Set.BijOn.finsetCard_eq
Nat.bijOn_ofDigits'
Finset.card_range
consFixedLengthDigits_head πŸ“–mathematicalFinset
Finset.instMembership
consFixedLengthDigits
ne_empty_of_mem_consFixedLengthDigitsβ€”ne_empty_of_mem_consFixedLengthDigits
Finset.mem_image
cons_mem_fixedLengthDigits_succ πŸ“–β€”Finset
Finset.instMembership
fixedLengthDigits
β€”β€”mem_fixedLengthDigits_iff
fixedLengthDigits_one πŸ“–mathematicalβ€”fixedLengthDigits
Finset.image
Finset.range
β€”Finset.ext
mem_fixedLengthDigits_iff
fixedLengthDigits_succ_eq_disjiUnion πŸ“–mathematicalβ€”fixedLengthDigits
Finset.disjiUnion
Finset.range
consFixedLengthDigits
pairwiseDisjoint_consFixedLengthDigits
β€”Finset.ext
pairwiseDisjoint_consFixedLengthDigits
Finset.disjiUnion_eq_biUnion
mem_fixedLengthDigits_iff
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
Nat.instCanonicallyOrderedAdd
cons_mem_fixedLengthDigits_succ
fixedLengthDigits_zero πŸ“–mathematicalβ€”fixedLengthDigits
Finset
Finset.instSingleton
β€”Finset.ext
Nat.mapsTo_ofDigits
mem_fixedLengthDigits_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
fixedLengthDigits
β€”Nat.mapsTo_ofDigits
ne_empty_of_mem_consFixedLengthDigits πŸ“–β€”Finset
Finset.instMembership
consFixedLengthDigits
β€”β€”Finset.mem_image
pairwiseDisjoint_consFixedLengthDigits πŸ“–mathematicalβ€”Set.PairwiseDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
SetLike.coe
Finset.instSetLike
Finset.range
consFixedLengthDigits
β€”Finset.pairwiseDisjoint_iff
ne_empty_of_mem_consFixedLengthDigits
Finset.mem_inter
consFixedLengthDigits_head
sum_fixedLengthDigits_sum πŸ“–mathematicalβ€”Finset.sum
Nat.instAddCommMonoid
fixedLengthDigits
MulZeroClass.toZero
Nat.instMulZeroClass
Monoid.toNatPow
Nat.instMonoid
Nat.choose
β€”Finset.sum_congr
fixedLengthDigits_zero
Finset.sum_singleton
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
mul_one
MulZeroClass.zero_mul
fixedLengthDigits.congr_simp
zero_add
fixedLengthDigits_one
Finset.sum_image
Finset.coe_range
add_zero
Finset.sum_range_id
tsub_self
Nat.choose_two_right
one_mul
pairwiseDisjoint_consFixedLengthDigits
fixedLengthDigits_succ_eq_disjiUnion
Finset.sum_disjiUnion
Finset.sum_comm
Finset.sum_add_distrib
Finset.sum_const
Finset.sum_nsmul
nsmul_eq_mul
Finset.card_range
add_tsub_cancel_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
card_fixedLengthDigits
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt

Nat

Definitions

NameCategoryTheorems
digitsAppend πŸ“–CompOp
5 mathmath: bijOn_digitsAppend', length_digitsAppend, mapsTo_digitsAppend, setInvOn_digitsAppend_ofDigits, bijOn_digitsAppend

Theorems

NameKindAssumesProvesValidatesDepends On
base_pow_length_digits_le πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
digits
β€”instCanonicallyOrderedAdd
zero_add
base_pow_length_digits_le'
base_pow_length_digits_le' πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
digits
β€”digits_ne_nil_iff_ne_zero
ofDigits_digits
pow_length_le_mul_ofDigits
getLast_digit_ne_zero
bijOn_digitsAppend πŸ“–mathematicalβ€”Set.BijOn
digitsAppend
setOf
Monoid.toNatPow
instMonoid
β€”Set.BijOn.symm
Set.InvOn.symm
setInvOn_digitsAppend_ofDigits
bijOn_ofDigits
bijOn_digitsAppend' πŸ“–mathematicalβ€”Set.BijOn
digitsAppend
SetLike.coe
Finset
Finset.instSetLike
Finset.range
Monoid.toNatPow
instMonoid
List.fixedLengthDigits
β€”mapsTo_ofDigits
Set.coe_toFinset
Set.ext
Finset.coe_range
bijOn_digitsAppend
bijOn_ofDigits πŸ“–mathematicalβ€”Set.BijOn
ofDigits
instSemiring
setOf
Monoid.toNatPow
instMonoid
β€”Set.InvOn.bijOn
setInvOn_digitsAppend_ofDigits
mapsTo_ofDigits
mapsTo_digitsAppend
bijOn_ofDigits' πŸ“–mathematicalβ€”Set.BijOn
ofDigits
instSemiring
SetLike.coe
Finset
Finset.instSetLike
List.fixedLengthDigits
Finset.range
Monoid.toNatPow
instMonoid
β€”mapsTo_ofDigits
Set.coe_toFinset
Set.ext
Finset.coe_range
bijOn_ofDigits
digits_append_digits πŸ“–mathematicalβ€”digits
Monoid.toNatPow
instMonoid
β€”eq_or_lt_of_le
zero_add
one_pow
one_mul
ofDigits_digits_append_digits
digits_ofDigits
digits_lt_base
getLast_digit_ne_zero
digits_ne_nil_iff_ne_zero
List.getLast_append_of_right_ne_nil
digits_append_zeroes_append_digits πŸ“–mathematicalβ€”digits
Monoid.toNatPow
instMonoid
β€”digits_base_pow_mul
digits_append_digits
AddLeftCancelSemigroup.toIsLeftCancelAdd
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
digits_len πŸ“–mathematicalβ€”digits
log
β€”strong_induction_on
digits_eq_cons_digits_div
digits_zero
zero_add
instCanonicallyOrderedAdd
log_div_base
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instOrderedSub
log_pos
Mathlib.Tactic.Contrapose.contraposeβ‚‚
digits_len_le_digits_len_succ πŸ“–mathematicalβ€”digitsβ€”Decidable.eq_or_ne
digits_zero
zero_add
instCanonicallyOrderedAdd
le_or_gt
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
le_antisymm
Mathlib.Tactic.IntervalCases.of_le_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_ofNat
digits_zero_succ'
digits_len
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
log_mono_right
digits_length_le_iff πŸ“–mathematicalβ€”digits
Monoid.toNatPow
instMonoid
β€”pow_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
digits_zero
instCanonicallyOrderedAdd
digits_len
log_lt_iff_lt_pow
digits_two_eq_bits πŸ“–mathematicalβ€”digits
bits
β€”digits_zero
zero_bits
digits_of_two_le_of_pos
instZeroLEOneClass
one_bits
bits_append_bit
instAtLeastTwoHAddOfNat
digits_def'
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCharZero
mul_div_cancel_leftβ‚€
instMulDivCancelClass
add_comm
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toIsOrderedRing
instNontrivial
add_zero
dvd_ofDigits_sub_ofDigits πŸ“–mathematicalsemigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
ofDigits
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”sub_self
add_sub_add_left_eq_sub
dvd_mul_sub_mul
getD_digits πŸ“–mathematicalβ€”digits
Monoid.toNatPow
instMonoid
β€”digits_zero
instCanonicallyOrderedAdd
List.head!_eq_head?_getD
head!_digits
pow_zero
digits_of_two_le_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
IsRightCancelAdd.addRightStrictMono_of_addRightMono
instNoMaxOrder
div_lt_self'
getLast_digit_ne_zero πŸ“–β€”β€”β€”β€”digits_ne_nil_iff_ne_zero
zero_add
List.getLast_replicate_succ
digits_of_lt
pos_iff_ne_zero
instCanonicallyOrderedAdd
digits_getLast
Ne.bot_lt
head!_digits πŸ“–mathematicalβ€”digitsβ€”digits_zero
ofDigits_digits
ofDigits_mod_eq_head!
digits_lt_base
List.head!_mem_self
digits_ne_nil_iff_ne_zero
injOn_ofDigits πŸ“–mathematicalβ€”Set.InjOn
ofDigits
instSemiring
setOf
β€”ofDigits_inj_of_len_eq
le_digits_len_le πŸ“–mathematicalβ€”digitsβ€”monotone_nat_of_le_succ
digits_len_le_digits_len_succ
length_digitsAppend πŸ“–mathematicalMonoid.toNatPow
instMonoid
digitsAppendβ€”digits_length_le_iff
lt_digits_length_iff πŸ“–mathematicalβ€”digits
Monoid.toNatPow
instMonoid
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
digits_length_le_iff
lt_of_mem_digitsAppend πŸ“–β€”digitsAppendβ€”β€”digits_lt_base
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
cast_one
cast_zero
mapsTo_digitsAppend πŸ“–mathematicalβ€”Set.MapsTo
digitsAppend
setOf
Monoid.toNatPow
instMonoid
β€”length_digitsAppend
lt_of_mem_digitsAppend
mapsTo_ofDigits πŸ“–mathematicalβ€”Set.MapsTo
ofDigits
instSemiring
setOf
Monoid.toNatPow
instMonoid
β€”ofDigits_lt_base_pow_length
Set.mem_setOf
modEq_digits_sum πŸ“–mathematicalβ€”ModEq
MulZeroClass.toZero
instMulZeroClass
digits
β€”ofDigits_one
ofDigits_digits
ofDigits_modEq
ofDigits_eq_sum_mapIdx πŸ“–mathematicalβ€”ofDigits
instSemiring
MulZeroClass.toZero
instMulZeroClass
Monoid.toNatPow
instMonoid
β€”ofDigits_eq_foldr
pow_zero
mul_one
ofDigits_eq_sum_mapIdx_aux
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
ofDigits_eq_sum_mapIdx_aux πŸ“–mathematicalβ€”MulZeroClass.toZero
instMulZeroClass
Monoid.toNatPow
instMonoid
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
List.sum_zipWith_distrib_left
ofDigits_mod πŸ“–mathematicalβ€”ofDigits
instSemiring
β€”ofDigits_modEq
ofDigits_modEq πŸ“–mathematicalβ€”ModEq
ofDigits
instSemiring
β€”ofDigits_modEq'
ModEq.symm
mod_modEq
ofDigits_modEq' πŸ“–mathematicalModEqofDigits
instSemiring
β€”β€”
ofDigits_mod_eq_head! πŸ“–mathematicalβ€”ofDigits
instSemiring
β€”β€”
ofDigits_neg_one πŸ“–mathematicalβ€”ofDigits
Int.instSemiring
List.alternatingSum
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
β€”MulZeroClass.mul_zero
add_zero
List.alternatingSum_cons
sub_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
ofDigits_zmod πŸ“–mathematicalβ€”ofDigits
Int.instSemiring
β€”ofDigits_zmodeq
ofDigits_zmodeq πŸ“–mathematicalβ€”Int.ModEq
ofDigits
Int.instSemiring
β€”ofDigits_zmodeq'
Int.ModEq.symm
Int.mod_modEq
ofDigits_zmodeq' πŸ“–mathematicalInt.ModEqofDigits
Int.instSemiring
β€”β€”
pow_length_le_mul_ofDigits πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
ofDigits
instSemiring
β€”List.dropLast_append_getLast
zero_add
add_comm
pow_add
pow_one
ofDigits_append
ofDigits_singleton
le_trans
pos_iff_ne_zero
instCanonicallyOrderedAdd
setInvOn_digitsAppend_ofDigits πŸ“–mathematicalβ€”Set.InvOn
digitsAppend
ofDigits
instSemiring
setOf
Monoid.toNatPow
instMonoid
β€”injOn_ofDigits
length_digitsAppend
mapsTo_ofDigits
lt_of_mem_digitsAppend
ofDigits_append_replicate_zero
ofDigits_digits
sub_one_mul_sum_div_pow_eq_sub_sum_digits πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
ofDigits
instSemiring
Monoid.toNatPow
instMonoid
MulZeroClass.toZero
instMulZeroClass
β€”trichotomous
Finset.sum_congr
Finset.sum_const_zero
MulZeroClass.mul_zero
tsub_self
instCanonicallyOrderedAdd
instOrderedSub
self_div_pow_eq_ofDigits_drop
digits_ofDigits
Finset.sum_range_succ
cast_id
em
add_zero
Finset.sum_singleton
Finset.sum_range_add_sum_Ico
ofDigits.eq_1
Ico_succ_singleton
Finset.sum_Ico_consecutive
Finset.sum_Ico_add
instIsOrderedCancelAddMonoid
CanonicallyOrderedAdd.toExistsAddOfLE
Ico_zero_eq_range
mul_add
Distrib.leftDistribClass
Finset.range_one
sum_le_ofDigits
one_mul
add_mul
Distrib.rightDistribClass
ofDigits_one
one_pow
Finset.sum_const
Finset.card_range
nsmul_eq_mul
MulZeroClass.zero_mul
zero_tsub
zero_pow
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
sub_one_mul_sum_log_div_pow_eq_sub_sum_digits πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
log
Monoid.toNatPow
instMonoid
MulZeroClass.toZero
instMulZeroClass
digits
β€”trichotomous
eq_or_ne
Finset.sum_congr
log_zero_right
zero_add
Finset.sum_const_zero
MulZeroClass.mul_zero
digits_zero
tsub_self
instCanonicallyOrderedAdd
instOrderedSub
digits_len
ofDigits_digits
sub_one_mul_sum_div_pow_eq_sub_sum_digits
digits_ne_nil_iff_ne_zero
getLast_digit_ne_zero
digits_lt_base
log_one_left
one_pow
Finset.sum_const
Finset.card_singleton
nsmul_eq_mul
cast_one
one_mul
MulZeroClass.zero_mul
List.sum_replicate
mul_one
zero_tsub
log_zero_left
zero_pow
add_zero
sum_digits_ofDigits_eq_sum πŸ“–mathematicalSet
Set.instMembership
setOf
MulZeroClass.toZero
instMulZeroClass
digits
ofDigits
instSemiring
β€”setInvOn_digitsAppend_ofDigits
List.sum_replicate
nsmul_zero
add_zero
sum_sum_digits_eq πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.range
Monoid.toNatPow
instMonoid
MulZeroClass.toZero
instMulZeroClass
digits
choose
β€”List.sum_fixedLengthDigits_sum
Finset.sum_nbij
bijOn_ofDigits'
sum_digits_ofDigits_eq_sum
List.mem_fixedLengthDigits_iff
zmodeq_ofDigits_digits πŸ“–mathematicalInt.ModEqofDigits
Int.instSemiring
digits
β€”ofDigits_digits
coe_ofDigits
ofDigits_zmodeq'

---

← Back to Index