Documentation Verification Report

DoubleFactorial

πŸ“ Source: Mathlib/Data/Nat/Factorial/DoubleFactorial.lean

Statistics

MetricCount
DefinitionsevalDoubleFactorial, doubleFactorial, Β«term_β€ΌΒ»
3
TheoremsdoubleFactorial_add_one, doubleFactorial_add_two, doubleFactorial_eq_prod_even, doubleFactorial_eq_prod_odd, doubleFactorial_le_factorial, doubleFactorial_pos, doubleFactorial_two_mul, factorial_eq_mul_doubleFactorial
8
Total11

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalDoubleFactorial πŸ“–CompOpβ€”

Nat

Definitions

NameCategoryTheorems
doubleFactorial πŸ“–CompOp
15 mathmath: Real.Gamma_nat_add_half, factorial_eq_mul_doubleFactorial, Polynomial.coeff_hermite_explicit, InnerProductSpace.volume_ball_of_dim_odd, Polynomial.coeff_hermite_of_even_add, Real.Gamma_nat_add_one_add_half, doubleFactorial_eq_prod_odd, doubleFactorial_pos, doubleFactorial_add_one, doubleFactorial_add_two, Polynomial.coeff_hermite, doubleFactorial_two_mul, doubleFactorial_le_factorial, doubleFactorial_eq_prod_even, InnerProductSpace.volume_closedBall_of_dim_odd
Β«term_β€ΌΒ» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
doubleFactorial_add_one πŸ“–mathematicalβ€”doubleFactorialβ€”β€”
doubleFactorial_add_two πŸ“–mathematicalβ€”doubleFactorialβ€”β€”
doubleFactorial_eq_prod_even πŸ“–mathematicalβ€”doubleFactorial
Finset.prod
instCommMonoid
Finset.range
β€”Finset.prod_range_succ
mul_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
doubleFactorial_eq_prod_odd πŸ“–mathematicalβ€”doubleFactorial
Finset.prod
instCommMonoid
Finset.range
β€”Finset.prod_range_succ
mul_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
doubleFactorial_le_factorial πŸ“–mathematicalβ€”doubleFactorial
factorial
β€”le_rfl
factorial_eq_mul_doubleFactorial
doubleFactorial_pos
doubleFactorial_pos πŸ“–mathematicalβ€”doubleFactorialβ€”zero_lt_one
instZeroLEOneClass
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
doubleFactorial_two_mul πŸ“–mathematicalβ€”doubleFactorial
Monoid.toNatPow
instMonoid
factorial
β€”mul_add
Distrib.leftDistribClass
mul_one
doubleFactorial_add_two
factorial.eq_2
pow_succ
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
factorial_eq_mul_doubleFactorial πŸ“–mathematicalβ€”factorial
doubleFactorial
β€”doubleFactorial_add_two
factorial.eq_2
mul_comm
mul_assoc

---

← Back to Index