Documentation Verification Report

SuperFactorial

📁 Source: Mathlib/Data/Nat/Factorial/SuperFactorial.lean

Statistics

MetricCount
DefinitionssuperFactorial, termSf_
2
Theoremsprod_Icc_factorial, prod_range_factorial_succ, prod_range_succ_factorial, superFactorial_four_mul, superFactorial_one, superFactorial_succ, superFactorial_two, superFactorial_two_mul, superFactorial_zero
9
Total11

Nat

Definitions

NameCategoryTheorems
superFactorial 📖CompOp
11 mathmath: prod_range_factorial_succ, superFactorial_zero, prod_Icc_factorial, Matrix.superFactorial_dvd_vandermonde_det, superFactorial_two_mul, Matrix.det_vandermonde_id_eq_superFactorial, superFactorial_succ, superFactorial_four_mul, superFactorial_one, superFactorial_two, prod_range_succ_factorial
termSf_ 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
prod_Icc_factorial 📖mathematicalFinset.prod
instCommMonoid
Finset.Icc
instPreorder
instLocallyFiniteOrder
factorial
superFactorial
Finset.Ico_add_one_right_eq_Icc
instNoMaxOrder
Finset.prod_Ico_succ_top
le_add_self
instCanonicallyOrderedAdd
factorial_succ
superFactorial.eq_2
factorial.eq_2
mul_comm
prod_range_factorial_succ 📖mathematicalFinset.prod
instCommMonoid
Finset.range
factorial
superFactorial
Finset.prod_Ico_add'
instIsOrderedCancelAddMonoid
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
Finset.range_eq_Ico
prod_Icc_factorial
prod_range_succ_factorial 📖mathematicalFinset.prod
instCommMonoid
Finset.range
factorial
superFactorial
Finset.prod_range_succ
mul_comm
superFactorial.eq_2
superFactorial_four_mul 📖mathematicalsuperFactorial
Monoid.toNatPow
instMonoid
Finset.prod
instCommMonoid
Finset.range
factorial
superFactorial_two_mul
mul_assoc
pow_mul'
mul_pow
superFactorial_one 📖mathematicalsuperFactorial
superFactorial_succ 📖mathematicalsuperFactorial
factorial
superFactorial_two 📖mathematicalsuperFactorial
superFactorial_two_mul 📖mathematicalsuperFactorial
Monoid.toNatPow
instMonoid
Finset.prod
instCommMonoid
Finset.range
factorial
mul_add
Distrib.leftDistribClass
mul_one
Finset.prod_congr
Finset.prod_range_succ
mul_pow
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
superFactorial_zero 📖mathematicalsuperFactorial

---

← Back to Index