Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/Nat/Factorization/Basic.lean

Statistics

MetricCount
Definitions0
TheoremsIcc_factorization_eq_pow_dvd, Ico_filter_pow_dvd_eq, Ico_pow_dvd_eq_Ico_of_lt, Ioc_filter_dvd_card_eq_div, dvd_iff_one_le_factorization, eq_of_factorization_pos, factorization_self, pow_dvd_iff_dvd_ordProj, pow_dvd_iff_le_factorization, card_multiples, card_multiples', coprime_ordCompl, dvd_iff_div_factorization_eq_tsub, dvd_iff_prime_pow_dvd_dvd, dvd_of_factorization_pos, dvd_ordCompl_of_dvd_not_dvd, dvd_ordProj_of_dvd, eq_factorization_iff, eq_iff_prime_padicValNat_eq, eq_pow_of_factorization_eq_single, exists_eq_pow_mul_and_not_dvd, exists_eq_pow_of_exponent_coprime_of_pow_eq_pow, exists_eq_pow_of_pow_eq_pow, exists_eq_two_pow_mul_odd, exists_factorization_lt_of_lt, factorizationEquiv_inv_apply, factorization_div, factorization_eq_card_pow_dvd, factorization_eq_card_pow_dvd_of_lt, factorization_eq_of_coprime_left, factorization_eq_of_coprime_right, factorization_eq_zero_iff', factorization_eq_zero_iff_remainder, factorization_eq_zero_of_lt, factorization_gcd, factorization_lcm, factorization_le_factorization_mul_left, factorization_le_factorization_mul_right, factorization_le_of_le_pow, factorization_lt, factorization_ordCompl, factorization_pow_self, factorization_prime_le_iff_dvd, factorization_prod_apply, not_dvd_ordCompl, ordCompl_dvd, ordCompl_dvd_ordCompl_iff_dvd, ordCompl_dvd_ordCompl_of_dvd, ordCompl_eq_self_iff_zero_or_not_dvd, ordCompl_le, ordCompl_mul, ordCompl_of_not_prime, ordCompl_pos, ordCompl_self_pow, ordCompl_self_pow_mul, ordProj_dvd_ordProj_of_dvd, ordProj_le, ordProj_mul, ordProj_mul_ordCompl_eq_self, ordProj_of_not_prime, ordProj_pos, ordProj_self_pow, pairwise_coprime_pow_primeFactors_factorization, prod_factorization_eq_prod_primeFactors, prod_pow_primeFactors_factorization, prod_pow_prime_padicValNat, prod_primeFactors_dvd, prod_primeFactors_gcd_mul_prod_primeFactors_mul, prod_primeFactors_prod_factorization, setOf_pow_dvd_eq_Icc_factorization, sum_primeFactors_gcd_add_sum_primeFactors_mul
71
Total71

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
Icc_factorization_eq_pow_dvd πŸ“–mathematicalPrimeFinset.Icc
instPreorder
instLocallyFiniteOrder
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
Finset.filter
Monoid.toNatPow
instMonoid
Finset.Ico
β€”eq_or_ne
factorization_zero
Finset.Icc_eq_empty_of_lt
instZeroLEOneClass
Finset.filter.congr_simp
Finset.Ico_eq_empty_of_le
instCanonicallyOrderedAdd
Finset.filter_empty
Finset.ext
Prime.pow_dvd_iff_le_factorization
lt_of_le_of_lt
factorization_lt
Ico_filter_pow_dvd_eq πŸ“–mathematicalPrime
Monoid.toNatPow
instMonoid
Finset.filter
Finset.Ico
instPreorder
instLocallyFiniteOrder
Finset.Icc
β€”Finset.ext
Prime.two_le
Prime.one_lt
LE.le.trans
Ne.bot_lt
Ico_pow_dvd_eq_Ico_of_lt πŸ“–mathematicalPrime
Monoid.toNatPow
instMonoid
Finset.filter
Finset.Ico
instPreorder
instLocallyFiniteOrder
β€”Finset.ext
zero_dvd_iff
zero_pow
Prime.one_lt
lt_of_le_of_lt
Ioc_filter_dvd_card_eq_div πŸ“–mathematicalβ€”Finset.card
Finset.filter
Finset.Ioc
instPreorder
instLocallyFiniteOrder
β€”Finset.filter.congr_simp
Finset.Ioc_eq_empty_of_le
Finset.filter_empty
instNoMaxOrder
instCanonicallyOrderedAdd
Finset.filter_insert
Finset.card_insert_of_notMem
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
add_ite
add_zero
card_multiples πŸ“–mathematicalβ€”Finset.card
Finset.filter
Finset.range
β€”Finset.filter_empty
Finset.filter.congr_simp
Finset.range_add_one
Finset.filter_insert
Finset.card_insert_of_notMem
add_ite
add_zero
card_multiples' πŸ“–mathematicalβ€”Finset.card
Finset.filter
Finset.range
β€”Finset.filter.congr_simp
zero_add
Finset.filter_false_of_mem
Finset.range_add_one
Finset.filter_insert
Finset.card_insert_of_notMem
coprime_ordCompl πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”not_dvd_ordCompl
coprime_or_dvd_of_prime
dvd_iff_div_factorization_eq_tsub πŸ“–mathematicalβ€”factorization
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.tsub
instAddCommMonoid
instPartialOrder
instCanonicallyOrderedAdd
instOrderedSub
β€”instCanonicallyOrderedAdd
instOrderedSub
factorization_div
eq_or_lt_of_le
tsub_self
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finsupp.orderedSub
exists_factorization_lt_of_lt
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
not_le
lt_self_iff_false
Finsupp.tsub_apply
lt_tsub_iff_right
Finsupp.add_apply
factorization_mul
dvd_iff_prime_pow_dvd_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
β€”eq_or_ne
prime_two
dvd_zero
Ne.bot_lt
LT.lt.not_ge
dvd_trans
factorization_prime_le_iff_dvd
Prime.pow_dvd_iff_le_factorization
ordProj_dvd
dvd_of_factorization_pos πŸ“–β€”β€”β€”β€”dvd_of_mem_primeFactorsList
mem_primeFactors_iff_mem_primeFactorsList
Finsupp.mem_support_iff
dvd_ordCompl_of_dvd_not_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_zero
pow_zero
factorization_le_iff_dvd
LT.lt.ne'
ordCompl_pos
factorization_ordCompl
Finsupp.erase_same
instCanonicallyOrderedAdd
Finsupp.erase_ne
dvd_ordProj_of_dvd πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”dvd_pow_self
LT.lt.ne'
Prime.factorization_pos_of_dvd
eq_factorization_iff πŸ“–mathematicalPrimefactorization
Finsupp.prod
MulZeroClass.toZero
instMulZeroClass
instCommMonoid
Monoid.toNatPow
instMonoid
β€”factorization_prod_pow_eq_self
prod_pow_factorization_eq_self
eq_iff_prime_padicValNat_eq πŸ“–mathematicalβ€”padicValNatβ€”eq_of_factorization_eq
factorization_def
factorization_eq_zero_of_not_prime
eq_pow_of_factorization_eq_single πŸ“–mathematicalfactorization
Finsupp.single
MulZeroClass.toZero
instMulZeroClass
Monoid.toNatPow
instMonoid
β€”factorization_prod_pow_eq_self
Finsupp.prod_single_index
pow_zero
exists_eq_pow_mul_and_not_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
β€”FiniteMultiplicity.exists_eq_pow_mul_and_not_dvd
finiteMultiplicity_iff
exists_eq_pow_of_exponent_coprime_of_pow_eq_pow πŸ“–β€”Monoid.toNatPow
instMonoid
β€”β€”pow_one
pow_zero
zero_pow
eq_of_factorization_eq
instNontrivial
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
factorization_zero_right
prime_of_mem_primeFactors
Finsupp.support_mapRange
factorization_pow
prod_pow_factorization_eq_self
pow_left_injective
exists_eq_pow_of_pow_eq_pow πŸ“–β€”Monoid.toNatPow
instMonoid
β€”β€”pow_left_injective
pow_mul
exists_eq_pow_of_exponent_coprime_of_pow_eq_pow
exists_eq_two_pow_mul_odd πŸ“–mathematicalβ€”Odd
instSemiring
Monoid.toNatPow
instMonoid
β€”exists_eq_pow_mul_and_not_dvd
not_even_iff_odd
instAtLeastTwoHAddOfNat
Even.two_dvd
exists_factorization_lt_of_lt πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”LT.lt.ne'
LT.lt.trans
Ne.bot_lt
Mathlib.Tactic.Contrapose.contrapose₁
factorization_le_iff_dvd
Finsupp.le_def
factorizationEquiv_inv_apply πŸ“–mathematicalPrimeDFunLike.coe
Equiv
Set.Elem
Finsupp
MulZeroClass.toZero
instMulZeroClass
setOf
PNat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
factorizationEquiv
Set
Set.instMembership
Finsupp.prod
instCommMonoid
Monoid.toNatPow
instMonoid
β€”β€”
factorization_div πŸ“–mathematicalβ€”factorization
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.tsub
instAddCommMonoid
instPartialOrder
instCanonicallyOrderedAdd
instOrderedSub
β€”instCanonicallyOrderedAdd
instOrderedSub
eq_or_ne
zero_dvd_iff
factorization_zero
tsub_self
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finsupp.orderedSub
tsub_eq_zero_of_le
add_left_injective
Finsupp.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Finsupp.isOrderedAddMonoid
factorization_le_iff_dvd
factorization_mul
LT.lt.ne'
Ne.bot_lt
factorization_eq_card_pow_dvd πŸ“–mathematicalPrimeDFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
Finset.card
Finset.filter
Monoid.toNatPow
instMonoid
Finset.Ico
instPreorder
instLocallyFiniteOrder
β€”Icc_factorization_eq_pow_dvd
card_Icc
add_tsub_cancel_right
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
factorization_eq_card_pow_dvd_of_lt πŸ“–mathematicalPrime
Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
Finset.card
Finset.filter
Finset.Ico
instPreorder
instLocallyFiniteOrder
β€”factorization_eq_card_pow_dvd
Ico_pow_dvd_eq_Ico_of_lt
factorization_eq_of_coprime_left πŸ“–mathematicalprimeFactorsListDFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_mul_apply_of_coprime
primeFactorsList_count_eq
coprime_primeFactorsList_disjoint
add_zero
factorization_eq_of_coprime_right πŸ“–mathematicalprimeFactorsListDFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”mul_comm
factorization_eq_of_coprime_left
factorization_eq_zero_iff' πŸ“–mathematicalβ€”factorization
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instZero
β€”factorization_eq_primeFactorsList_multiset
EquivLike.toEmbeddingLike
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
factorization_eq_zero_iff_remainder πŸ“–mathematicalPrimeDFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_eq_zero_of_remainder
Mathlib.Tactic.Contrapose.contrapose₃
dvd_mul_right
Mathlib.Tactic.Contrapose.contraposeβ‚„
add_eq_zero
Unique.instSubsingleton
factorization_eq_zero_iff
factorization_eq_zero_of_lt πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”Finsupp.notMem_support_iff
le_of_mem_primeFactors
not_le_of_gt
factorization_gcd πŸ“–mathematicalβ€”factorization
Finsupp
MulZeroClass.toZero
instMulZeroClass
SemilatticeInf.toMin
Finsupp.semilatticeInf
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeNat
β€”Finsupp.support_inf
instCanonicallyOrderedAdd
prime_of_mem_primeFactorsList
prod_pow_factorization_eq_self
LT.lt.ne'
gcd_greatest
factorization_le_iff_dvd
inf_le_left
inf_le_right
Decidable.eq_or_ne
factorization_lcm πŸ“–mathematicalβ€”factorization
Finsupp
MulZeroClass.toZero
instMulZeroClass
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeNat
β€”Finsupp.instIsLeftCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd
factorization_mul
factorization_gcd
Finsupp.ext
min_add_max
factorization_le_factorization_mul_left πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instLE
factorization
β€”eq_or_ne
factorization_zero
MulZeroClass.zero_mul
factorization_le_iff_dvd
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
Dvd.intro
factorization_le_factorization_mul_right πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instLE
factorization
β€”mul_comm
factorization_le_factorization_mul_left
factorization_le_of_le_pow πŸ“–mathematicalMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_zero
instCanonicallyOrderedAdd
Prime.one_lt
LE.le.trans
ordProj_le
factorization_eq_zero_of_not_prime
factorization_lt πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”Prime.one_lt
LE.le.trans_lt
ordProj_le
factorization_eq_zero_of_not_prime
Ne.bot_lt
factorization_ordCompl πŸ“–mathematicalβ€”factorization
Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
Finsupp.erase
β€”factorization_zero
pow_zero
Finsupp.erase_of_notMem_support
Finsupp.ext
eq_or_ne
Finsupp.erase_same
not_dvd_ordCompl
Finsupp.erase_ne
instCanonicallyOrderedAdd
instOrderedSub
factorization_div
ordProj_dvd
factorization_pow
Prime.factorization
Finsupp.smul_single
mul_one
Finsupp.single_eq_of_ne'
tsub_zero
factorization_eq_zero_of_not_prime
factorization_pow_self πŸ“–mathematicalPrimeDFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
Monoid.toNatPow
instMonoid
β€”factorization_pow
Prime.factorization_self
mul_one
factorization_prime_le_iff_dvd πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_le_iff_dvd
em
factorization_eq_zero_of_not_prime
le_refl
factorization_prod_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
Finset.prod
instCommMonoid
Finset.sum
instAddCommMonoid
β€”factorization_prod
Finsupp.finset_sum_apply
not_dvd_ordCompl πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”Prime.dvd_iff_one_le_factorization
LT.lt.ne'
ordCompl_pos
instCanonicallyOrderedAdd
instOrderedSub
factorization_div
ordProj_dvd
factorization_pow
Prime.factorization
Finsupp.smul_single
mul_one
Finsupp.single_eq_same
tsub_self
ordCompl_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”ordProj_dvd
ordCompl_dvd_ordCompl_iff_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”eq_or_ne
prime_dvd_prime_iff_eq
Prime.ne_one
Ne.bot_lt
mul_one
Prime.factorization
Finsupp.single_eq_of_ne'
pow_zero
Prime.factorization_self
pow_one
factorization_eq_zero_of_not_prime
ordCompl_dvd_ordCompl_of_dvd
ordCompl_dvd_ordCompl_of_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”em'
factorization_eq_zero_of_not_prime
pow_zero
eq_or_ne
factorization_zero
zero_dvd_iff
LT.lt.ne'
ordProj_le
ordProj_pos
factorization_le_iff_dvd
factorization_ordCompl
Finsupp.erase_same
Finsupp.erase_ne
ordCompl_eq_self_iff_zero_or_not_dvd πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”not_dvd_ordCompl
factorization_zero
pow_zero
factorization_eq_zero_of_not_dvd
ordCompl_le πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”β€”
ordCompl_mul πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”MulZeroClass.zero_mul
factorization_zero
pow_zero
MulZeroClass.mul_zero
ordProj_mul
ordProj_dvd
ordCompl_of_not_prime πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_eq_zero_of_not_prime
pow_zero
ordCompl_pos πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”ordProj_le
ordProj_pos
factorization_eq_zero_of_not_prime
pow_zero
Ne.bot_lt
ordCompl_self_pow πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”eq_of_factorization_eq
pos_iff_ne_zero
instCanonicallyOrderedAdd
ordCompl_pos
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Prime.ne_zero
one_ne_zero
instOrderedSub
Prime.factorization_pow
Finsupp.single_eq_same
factorization_div
tsub_self
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finsupp.orderedSub
factorization_one
ordCompl_self_pow_mul πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”ordCompl_mul
ordCompl_self_pow
one_mul
ordProj_dvd_ordProj_of_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”em'
factorization_eq_zero_of_not_prime
pow_zero
eq_or_ne
factorization_zero
Unique.instSubsingleton
Prime.one_lt
factorization_le_iff_dvd
ordProj_le πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”Ne.bot_lt
ordProj_dvd
ordProj_mul πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_mul
pow_add
ordProj_mul_ordCompl_eq_self πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”ordProj_dvd
ordProj_of_not_prime πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_eq_zero_of_not_prime
pow_zero
ordProj_pos πŸ“–mathematicalβ€”Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”Prime.pos
factorization_eq_zero_of_not_prime
pow_zero
instZeroLEOneClass
ordProj_self_pow πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_pow
Prime.factorization
Finsupp.smul_single
mul_one
Finsupp.single_eq_same
pairwise_coprime_pow_primeFactors_factorization πŸ“–mathematicalβ€”Pairwise
Finset
SetLike.instMembership
Finset.instSetLike
primeFactors
Function.onFun
Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”coprime_primes
prime_of_mem_primeFactors
Subtype.coe_ne_coe
prod_factorization_eq_prod_primeFactors πŸ“–mathematicalβ€”Finsupp.prod
MulZeroClass.toZero
instMulZeroClass
factorization
Finset.prod
primeFactors
DFunLike.coe
Finsupp
Finsupp.instFunLike
β€”β€”
prod_pow_primeFactors_factorization πŸ“–mathematicalβ€”Finset.prod
Finset
SetLike.instMembership
Finset.instSetLike
primeFactors
instCommMonoid
Finset.univ
Finset.Subtype.fintype
Monoid.toNatPow
instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”factorization_prod_pow_eq_self
prod_factorization_eq_prod_primeFactors
Finset.prod_subtype
prod_pow_prime_padicValNat πŸ“–mathematicalβ€”Finset.prod
instCommMonoid
Finset.filter
Prime
decidablePrime
Finset.range
Monoid.toNatPow
instMonoid
padicValNat
β€”factorization_prod_pow_eq_self
Finset.prod_subset_one_on_sdiff
Finset.mem_filter
Finset.mem_range
LT.lt.trans_le'
le_of_mem_primeFactors
prime_of_mem_primeFactors
Finset.mem_sdiff
factorization_def
Finsupp.notMem_support_iff
pow_zero
prod_primeFactors_dvd πŸ“–mathematicalβ€”Finset.prod
instCommMonoid
primeFactors
β€”Finset.prod_congr
primeFactors_zero
Unique.instSubsingleton
prod_primeFactorsList
Multiset.toFinset_prod_dvd_prod
prod_primeFactors_gcd_mul_prod_primeFactors_mul πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
primeFactors
β€”eq_or_ne
Finset.prod_congr
MulZeroClass.zero_mul
primeFactors_zero
mul_one
one_mul
MulZeroClass.mul_zero
primeFactors_mul
primeFactors_gcd
mul_comm
Finset.prod_union_inter
prod_primeFactors_prod_factorization πŸ“–mathematicalβ€”Finset.prod
primeFactors
Finsupp.prod
MulZeroClass.toZero
instMulZeroClass
factorization
β€”β€”
setOf_pow_dvd_eq_Icc_factorization πŸ“–mathematicalPrimesetOf
Monoid.toNatPow
instMonoid
Set.Icc
instPreorder
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
β€”Set.ext
Prime.pow_dvd_iff_le_factorization
sum_primeFactors_gcd_add_sum_primeFactors_mul πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
primeFactors
β€”eq_or_ne
Finset.sum_congr
MulZeroClass.zero_mul
primeFactors_zero
add_zero
zero_add
MulZeroClass.mul_zero
primeFactors_mul
primeFactors_gcd
add_comm
Finset.sum_union_inter

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_iff_one_le_factorization πŸ“–mathematicalNat.PrimeDFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”pow_one
pow_dvd_iff_le_factorization
eq_of_factorization_pos πŸ“–β€”Nat.Primeβ€”β€”factorization
Finsupp.single_apply
factorization_self πŸ“–mathematicalNat.PrimeDFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”factorization
Finsupp.single_eq_same
pow_dvd_iff_dvd_ordProj πŸ“–mathematicalNat.PrimeMonoid.toNatPow
Nat.instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”one_lt
pow_dvd_iff_le_factorization
pow_dvd_iff_le_factorization πŸ“–mathematicalNat.PrimeMonoid.toNatPow
Nat.instMonoid
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Nat.factorization
β€”Nat.factorization_le_iff_dvd
LT.lt.ne'
pos
factorization_pow
Finsupp.single_le_iff
Nat.instCanonicallyOrderedAdd

---

← Back to Index