π Source: Mathlib/Data/Nat/Factorization/Basic.lean
Icc_factorization_eq_pow_dvd
Ico_filter_pow_dvd_eq
Ico_pow_dvd_eq_Ico_of_lt
Ioc_filter_dvd_card_eq_div
dvd_iff_one_le_factorization
eq_of_factorization_pos
factorization_self
pow_dvd_iff_dvd_ordProj
pow_dvd_iff_le_factorization
card_multiples
card_multiples'
coprime_ordCompl
dvd_iff_div_factorization_eq_tsub
dvd_iff_prime_pow_dvd_dvd
dvd_of_factorization_pos
dvd_ordCompl_of_dvd_not_dvd
dvd_ordProj_of_dvd
eq_factorization_iff
eq_iff_prime_padicValNat_eq
eq_pow_of_factorization_eq_single
exists_eq_pow_mul_and_not_dvd
exists_eq_pow_of_exponent_coprime_of_pow_eq_pow
exists_eq_pow_of_pow_eq_pow
exists_eq_two_pow_mul_odd
exists_factorization_lt_of_lt
factorizationEquiv_inv_apply
factorization_div
factorization_eq_card_pow_dvd
factorization_eq_card_pow_dvd_of_lt
factorization_eq_of_coprime_left
factorization_eq_of_coprime_right
factorization_eq_zero_iff'
factorization_eq_zero_iff_remainder
factorization_eq_zero_of_lt
factorization_gcd
factorization_lcm
factorization_le_factorization_mul_left
factorization_le_factorization_mul_right
factorization_le_of_le_pow
factorization_lt
factorization_ordCompl
factorization_pow_self
factorization_prime_le_iff_dvd
factorization_prod_apply
not_dvd_ordCompl
ordCompl_dvd
ordCompl_dvd_ordCompl_iff_dvd
ordCompl_dvd_ordCompl_of_dvd
ordCompl_eq_self_iff_zero_or_not_dvd
ordCompl_le
ordCompl_mul
ordCompl_of_not_prime
ordCompl_pos
ordCompl_self_pow
ordCompl_self_pow_mul
ordProj_dvd_ordProj_of_dvd
ordProj_le
ordProj_mul
ordProj_mul_ordCompl_eq_self
ordProj_of_not_prime
ordProj_pos
ordProj_self_pow
pairwise_coprime_pow_primeFactors_factorization
prod_factorization_eq_prod_primeFactors
prod_pow_primeFactors_factorization
prod_pow_prime_padicValNat
prod_primeFactors_dvd
prod_primeFactors_gcd_mul_prod_primeFactors_mul
prod_primeFactors_prod_factorization
setOf_pow_dvd_eq_Icc_factorization
sum_primeFactors_gcd_add_sum_primeFactors_mul
Prime
Finset.Icc
instPreorder
instLocallyFiniteOrder
DFunLike.coe
Finsupp
MulZeroClass.toZero
instMulZeroClass
Finsupp.instFunLike
factorization
Finset.filter
Monoid.toNatPow
instMonoid
Finset.Ico
eq_or_ne
factorization_zero
Finset.Icc_eq_empty_of_lt
instZeroLEOneClass
Finset.filter.congr_simp
Finset.Ico_eq_empty_of_le
instCanonicallyOrderedAdd
Finset.filter_empty
Finset.ext
Prime.pow_dvd_iff_le_factorization
lt_of_le_of_lt
Prime.two_le
Prime.one_lt
LE.le.trans
Ne.bot_lt
zero_dvd_iff
zero_pow
Finset.card
Finset.Ioc
Finset.Ioc_eq_empty_of_le
instNoMaxOrder
Finset.filter_insert
Finset.card_insert_of_notMem
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
add_ite
add_zero
Finset.range
Finset.range_add_one
zero_add
Finset.filter_false_of_mem
coprime_or_dvd_of_prime
Finsupp.tsub
instAddCommMonoid
instPartialOrder
instOrderedSub
eq_or_lt_of_le
tsub_self
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
Finsupp.orderedSub
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
not_le
lt_self_iff_false
Finsupp.tsub_apply
lt_tsub_iff_right
Finsupp.add_apply
factorization_mul
prime_two
dvd_zero
LT.lt.not_ge
dvd_trans
ordProj_dvd
dvd_of_mem_primeFactorsList
mem_primeFactors_iff_mem_primeFactorsList
Finsupp.mem_support_iff
pow_zero
factorization_le_iff_dvd
LT.lt.ne'
Finsupp.erase_same
Finsupp.erase_ne
dvd_pow_self
Prime.factorization_pos_of_dvd
Finsupp.prod
instCommMonoid
factorization_prod_pow_eq_self
prod_pow_factorization_eq_self
padicValNat
eq_of_factorization_eq
factorization_def
factorization_eq_zero_of_not_prime
Finsupp.single
Finsupp.prod_single_index
FiniteMultiplicity.exists_eq_pow_mul_and_not_dvd
finiteMultiplicity_iff
pow_one
instNontrivial
factorization_zero_right
prime_of_mem_primeFactors
Finsupp.support_mapRange
factorization_pow
pow_left_injective
pow_mul
Odd
instSemiring
not_even_iff_odd
instAtLeastTwoHAddOfNat
Even.two_dvd
LT.lt.trans
Mathlib.Tactic.Contrapose.contraposeβ
Finsupp.le_def
Equiv
Set.Elem
setOf
PNat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
factorizationEquiv
Set
Set.instMembership
tsub_eq_zero_of_le
add_left_injective
Finsupp.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
tsub_add_cancel_of_le
Finsupp.isOrderedAddMonoid
card_Icc
add_tsub_cancel_right
primeFactorsList
factorization_mul_apply_of_coprime
primeFactorsList_count_eq
coprime_primeFactorsList_disjoint
mul_comm
Finsupp.instZero
factorization_eq_primeFactorsList_multiset
EquivLike.toEmbeddingLike
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
factorization_eq_zero_of_remainder
Mathlib.Tactic.Contrapose.contraposeβ
dvd_mul_right
Mathlib.Tactic.Contrapose.contraposeβ
add_eq_zero
Unique.instSubsingleton
factorization_eq_zero_iff
Finsupp.notMem_support_iff
le_of_mem_primeFactors
not_le_of_gt
SemilatticeInf.toMin
Finsupp.semilatticeInf
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeNat
Finsupp.support_inf
prime_of_mem_primeFactorsList
gcd_greatest
inf_le_left
inf_le_right
Decidable.eq_or_ne
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Finsupp.instIsLeftCancelAdd
Finsupp.ext
min_add_max
Finsupp.instLE
MulZeroClass.zero_mul
Dvd.intro
LE.le.trans_lt
Finsupp.erase
Finsupp.erase_of_notMem_support
Prime.factorization
Finsupp.smul_single
mul_one
Finsupp.single_eq_of_ne'
tsub_zero
Prime.factorization_self
em
le_refl
Finset.prod
Finset.sum
factorization_prod
Finsupp.finset_sum_apply
Prime.dvd_iff_one_le_factorization
Finsupp.single_eq_same
prime_dvd_prime_iff_eq
Prime.ne_one
em'
factorization_eq_zero_of_not_dvd
MulZeroClass.mul_zero
pos_iff_ne_zero
pow_ne_zero
isReduced_of_noZeroDivisors
Prime.ne_zero
one_ne_zero
Prime.factorization_pow
factorization_one
one_mul
pow_add
Prime.pos
Pairwise
Finset
SetLike.instMembership
Finset.instSetLike
primeFactors
Function.onFun
coprime_primes
Subtype.coe_ne_coe
Finset.univ
Finset.Subtype.fintype
Finset.prod_subtype
decidablePrime
Finset.prod_subset_one_on_sdiff
Finset.mem_filter
Finset.mem_range
LT.lt.trans_le'
Finset.mem_sdiff
Finset.prod_congr
primeFactors_zero
prod_primeFactorsList
Multiset.toFinset_prod_dvd_prod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
primeFactors_mul
primeFactors_gcd
Finset.prod_union_inter
Set.Icc
Set.ext
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum_congr
add_comm
Finset.sum_union_inter
Nat.Prime
Nat.instMulZeroClass
Nat.factorization
Finsupp.single_apply
Nat.instMonoid
one_lt
Nat.factorization_le_iff_dvd
pos
Finsupp.single_le_iff
Nat.instCanonicallyOrderedAdd
---
β Back to Index