Documentation Verification Report

LCM

πŸ“ Source: Mathlib/Data/Nat/Factorization/LCM.lean

Statistics

MetricCount
Definitions0
Theoremscoprime_factorizationLCMLeft_factorizationLCMRight, factorizationLCMLeft_dvd_left, factorizationLCMLeft_mul_factorizationLCMRight, factorizationLCMLeft_pos, factorizationLCMLeft_zero_left, factorizationLCMLeft_zero_right, factorizationLCMRight_dvd_right, factorizationLCMRight_pos, factorizationLCMRight_zero_right, factorizationLCRight_zero_left
10
Total10

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
coprime_factorizationLCMLeft_factorizationLCMRight πŸ“–mathematicalβ€”factorizationLCMLeft
factorizationLCMRight
β€”factorizationLCMLeft.eq_1
factorizationLCMRight.eq_1
coprime_prod_left_iff
coprime_prod_right_iff
coprime_pow_primes
prime_of_mem_primeFactors
Mathlib.Tactic.Contrapose.contraposeβ‚„
factorizationLCMLeft_dvd_left πŸ“–mathematicalβ€”factorizationLCMLeftβ€”eq_or_ne
factorization_zero
instCanonicallyOrderedAdd
Unique.instSubsingleton
factorization_prod_pow_eq_self
Finsupp.prod_of_support_subset
Finsupp.mem_support_iff
factorization_lcm
LT.lt.ne'
lt_sup_iff
pow_zero
Finset.prod_dvd_prod_of_dvd
pow_dvd_pow
sup_le
le_rfl
one_dvd
factorizationLCMLeft_mul_factorizationLCMRight πŸ“–mathematicalβ€”factorizationLCMLeft
factorizationLCMRight
β€”factorization_prod_pow_eq_self
factorizationLCMLeft.eq_1
factorizationLCMRight.eq_1
Finsupp.prod_mul
mul_one
one_mul
factorizationLCMLeft_pos πŸ“–mathematicalβ€”factorizationLCMLeftβ€”factorizationLCMLeft.eq_1
Finsupp.prod_ne_zero_iff
instNontrivial
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
isReduced_of_noZeroDivisors
factorization_zero_right
factorizationLCMLeft_zero_left πŸ“–mathematicalβ€”factorizationLCMLeftβ€”factorization_zero
instCanonicallyOrderedAdd
factorizationLCMLeft_zero_right πŸ“–mathematicalβ€”factorizationLCMLeftβ€”factorization_zero
instCanonicallyOrderedAdd
factorizationLCMRight_dvd_right πŸ“–mathematicalβ€”factorizationLCMRightβ€”eq_or_ne
factorization_zero
instCanonicallyOrderedAdd
Unique.instSubsingleton
factorization_prod_pow_eq_self
Finsupp.prod_of_support_subset
Finsupp.mem_support_iff
factorization_lcm
LT.lt.ne'
lt_sup_iff
pow_zero
Finset.prod_dvd_prod_of_dvd
one_dvd
pow_dvd_pow
sup_le
LT.lt.le
not_le
le_rfl
factorizationLCMRight_pos πŸ“–mathematicalβ€”factorizationLCMRightβ€”factorizationLCMRight.eq_1
Finsupp.prod_ne_zero_iff
instNontrivial
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
isReduced_of_noZeroDivisors
factorization_zero_right
factorizationLCMRight_zero_right πŸ“–mathematicalβ€”factorizationLCMRightβ€”factorization_zero
instCanonicallyOrderedAdd
Finsupp.prod_fun_one
factorizationLCRight_zero_left πŸ“–mathematicalβ€”factorizationLCMRightβ€”factorization_zero
instCanonicallyOrderedAdd

---

← Back to Index