Documentation Verification Report

Root

📁 Source: Mathlib/Data/Nat/Factorization/Root.lean

Statistics

MetricCount
DefinitionsceilRoot, floorRoot
2
TheoremsceilRoot_def, ceilRoot_eq_zero, ceilRoot_ne_zero, ceilRoot_one_left, ceilRoot_one_right, ceilRoot_pow_self, ceilRoot_zero_left, ceilRoot_zero_right, dvd_ceilRoot_pow, dvd_pow_iff_ceilRoot_dvd, factorization_ceilRoot, factorization_floorRoot, floorRoot_def, floorRoot_eq_zero, floorRoot_ne_zero, floorRoot_one_left, floorRoot_one_right, floorRoot_pow_dvd, floorRoot_pow_self, floorRoot_zero_left, floorRoot_zero_right, pow_dvd_iff_dvd_floorRoot
22
Total24

Nat

Definitions

NameCategoryTheorems
ceilRoot 📖CompOp
10 mathmath: ceilRoot_def, ceilRoot_one_left, factorization_ceilRoot, ceilRoot_eq_zero, dvd_pow_iff_ceilRoot_dvd, ceilRoot_zero_left, ceilRoot_zero_right, ceilRoot_one_right, ceilRoot_pow_self, dvd_ceilRoot_pow
floorRoot 📖CompOp
10 mathmath: floorRoot_eq_zero, floorRoot_zero_left, floorRoot_zero_right, pow_dvd_iff_dvd_floorRoot, floorRoot_one_right, floorRoot_one_left, factorization_floorRoot, floorRoot_def, floorRoot_pow_self, floorRoot_pow_dvd

Theorems

NameKindAssumesProvesValidatesDepends On
ceilRoot_def 📖mathematicalceilRoot
Finsupp.prod
MulZeroClass.toZero
instMulZeroClass
instCommMonoid
CeilDiv.ceilDiv
Finsupp
instAddCommMonoid
instPartialOrder
Finsupp.instAddCommMonoid
Finsupp.partialorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.smulZeroClass
DistribSMul.toSMulZeroClass
instAddMonoid
instDistribSMul
instNonUnitalNonAssocSemiring
Finsupp.instCeilDiv
instCeilDiv
factorization
Monoid.toNatPow
instMonoid
Finsupp.prod_mapRange_index
pow_zero
zero_ceilDiv
ceilRoot_eq_zero 📖mathematicalceilRootIff.not_right
ceilRoot_ne_zero
ceilRoot_ne_zero 📖ceilRoot_def
instNontrivial
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
factorization_zero_right
zero_ceilDiv
ceilRoot_one_left 📖mathematicalceilRootadd_tsub_cancel_right
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
factorization_prod_pow_eq_self
ceilRoot_one_right 📖mathematicalceilRootfactorization_one
ceilRoot_pow_self 📖mathematicalceilRoot
Monoid.toNatPow
instMonoid
ceilRoot_def
factorization_pow
smul_ceilDiv
instPosSMulMonoNatOfIsOrderedAddMonoid
Finsupp.isOrderedAddMonoid
instIsOrderedAddMonoid
Finsupp.instPosSMulReflectLE
PosSMulStrictMono.toPosSMulReflectLE
StrictOrderedSemiring.toPosSMulStrictMonoNat
instIsStrictOrderedRing
pos_iff_ne_zero
instCanonicallyOrderedAdd
factorization_prod_pow_eq_self
ceilRoot_zero_left 📖mathematicalceilRoot
ceilRoot_zero_right 📖mathematicalceilRoot
dvd_ceilRoot_pow 📖mathematicalMonoid.toNatPow
instMonoid
ceilRoot
dvd_pow_iff_ceilRoot_dvd
dvd_rfl
dvd_pow_iff_ceilRoot_dvd 📖mathematicalMonoid.toNatPow
instMonoid
ceilRoot
eq_or_ne
ceilRoot_zero_right
zero_pow
factorization_le_iff_dvd
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
ceilRoot_ne_zero
factorization_pow
factorization_ceilRoot
ceilDiv_le_iff_le_smul
pos_iff_ne_zero
factorization_ceilRoot 📖mathematicalfactorization
ceilRoot
CeilDiv.ceilDiv
Finsupp
MulZeroClass.toZero
instMulZeroClass
instAddCommMonoid
instPartialOrder
Finsupp.instAddCommMonoid
Finsupp.partialorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.smulZeroClass
DistribSMul.toSMulZeroClass
instAddMonoid
instDistribSMul
instNonUnitalNonAssocSemiring
Finsupp.instCeilDiv
instCeilDiv
ceilRoot_def
factorization_zero
ceilDiv_of_nonpos
zero_ceilDiv
prod_pow_factorization_eq_self
Finsupp.support_ceilDiv_subset
factorization_floorRoot 📖mathematicalfactorization
floorRoot
FloorDiv.floorDiv
Finsupp
MulZeroClass.toZero
instMulZeroClass
instAddCommMonoid
instPartialOrder
Finsupp.instAddCommMonoid
Finsupp.partialorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.smulZeroClass
DistribSMul.toSMulZeroClass
instAddMonoid
instDistribSMul
instNonUnitalNonAssocSemiring
Finsupp.instFloorDiv
instFloorDiv
floorRoot_def
factorization_zero
floorDiv_of_nonpos
zero_floorDiv
prod_pow_factorization_eq_self
Finsupp.support_floorDiv_subset
floorRoot_def 📖mathematicalfloorRoot
Finsupp.prod
MulZeroClass.toZero
instMulZeroClass
instCommMonoid
FloorDiv.floorDiv
Finsupp
instAddCommMonoid
instPartialOrder
Finsupp.instAddCommMonoid
Finsupp.partialorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.smulZeroClass
DistribSMul.toSMulZeroClass
instAddMonoid
instDistribSMul
instNonUnitalNonAssocSemiring
Finsupp.instFloorDiv
instFloorDiv
factorization
Monoid.toNatPow
instMonoid
Finsupp.prod_mapRange_index
pow_zero
zero_floorDiv
floorRoot_eq_zero 📖mathematicalfloorRootIff.not_right
floorRoot_ne_zero
floorRoot_ne_zero 📖instNontrivial
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
factorization_zero_right
floorRoot_one_left 📖mathematicalfloorRootfactorization_prod_pow_eq_self
floorRoot_one_right 📖mathematicalfloorRootfactorization_one
floorRoot_pow_dvd 📖mathematicalMonoid.toNatPow
instMonoid
floorRoot
pow_dvd_iff_dvd_floorRoot
dvd_rfl
floorRoot_pow_self 📖mathematicalfloorRoot
Monoid.toNatPow
instMonoid
floorRoot_def
factorization_pow
smul_floorDiv
instPosSMulMonoNatOfIsOrderedAddMonoid
Finsupp.isOrderedAddMonoid
instIsOrderedAddMonoid
Finsupp.instPosSMulReflectLE
PosSMulStrictMono.toPosSMulReflectLE
StrictOrderedSemiring.toPosSMulStrictMonoNat
instIsStrictOrderedRing
pos_iff_ne_zero
instCanonicallyOrderedAdd
factorization_prod_pow_eq_self
floorRoot_zero_left 📖mathematicalfloorRoot
floorRoot_zero_right 📖mathematicalfloorRoot
pow_dvd_iff_dvd_floorRoot 📖mathematicalMonoid.toNatPow
instMonoid
floorRoot
eq_or_ne
pow_zero
Unique.instSubsingleton
floorRoot_zero_left
floorRoot_zero_right
zero_pow
factorization_le_iff_dvd
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
floorRoot_ne_zero
factorization_pow
factorization_floorRoot
le_floorDiv_iff_smul_le
pos_iff_ne_zero

---

← Back to Index