Documentation Verification Report

Basic

📁 Source: Mathlib/Data/Nat/Fib/Basic.lean

Statistics

MetricCount
DefinitionsfastFib, fastFibAux, fib
3
TheoremsfastFibAux_bit_false, fastFibAux_bit_true, fastFibAux_eq, fastFib_eq, fast_fib_aux_bit_ff, fast_fib_aux_bit_tt, fast_fib_aux_eq, fast_fib_eq, fib_add, fib_add_one, fib_add_two, fib_add_two_strictMono, fib_add_two_sub_fib_add_one, fib_coprime_fib_succ, fib_dvd, fib_eq_fastFib, fib_eq_zero, fib_gcd, fib_le_fib_succ, fib_lt_fib, fib_lt_fib_succ, fib_mono, fib_one, fib_pos, fib_strictMonoOn, fib_succ_eq_succ_sum, fib_succ_eq_sum_choose, fib_two, fib_two_mul, fib_two_mul_add_one, fib_two_mul_add_two, fib_zero, gcd_fib_add_mul_self, gcd_fib_add_self, le_fib_add_one, le_fib_self
36
Total39

Nat

Definitions

NameCategoryTheorems
fastFib 📖CompOp
3 mathmath: fastFib_eq, fib_eq_fastFib, fast_fib_eq
fastFibAux 📖CompOp
6 mathmath: fast_fib_aux_bit_ff, fast_fib_aux_eq, fast_fib_aux_bit_tt, fastFibAux_bit_false, fastFibAux_eq, fastFibAux_bit_true
fib 📖CompOp
64 mathmath: fastFib_eq, Real.goldenConj_mul_fib_succ_add_fib, lt_fib_greatestFib_add_one, greatestFib_fib, fib_le_fib_succ, GenContFract.succ_nth_fib_le_of_nth_den, Int.fib_neg_natCast, fib_coprime_fib_succ, fast_fib_aux_eq, fib_lt_fib_succ, Mathlib.Meta.NormNum.isFibAux_two_mul_add_one_done, fib_add_two_sub_fib_add_one, fib_golden_exp', Int.fib_natCast, fib_mono, Real.coe_fib_eq, greatestFib_lt, fib_succ_eq_succ_sum, fib_add_two, Int.fib_of_nonneg, fib_gcd, List.IsZeckendorfRep.sum_fib_lt, fib_dvd, Real.goldenRatio_mul_fib_succ_add_fib, fib_two_mul, fib_pos, fib_eq_fastFib, tendsto_fib_div_fib_succ_atTop, fib_greatestFib_le, fib_lt_fib, greatestFib_sub_fib_greatestFib_le_greatestFib, fib_two_mul_add_one, gcd_fib_add_self, fib_one, fib_strictMonoOn, fib_two, Real.coe_fib_eq', sum_zeckendorf_fib, Real.fib_isSol_fibRec, fib_add_two_strictMono, GenContFract.fib_le_of_contsAux_b, fib_two_mul_add_two, fib_add, fib_golden_conj_exp, fast_fib_eq, fib_succ_eq_sum_choose, le_fib_self, zeckendorf_succ, Int.fib_two_mul_add_one_eq_natFib_natAbs, tendsto_fib_succ_div_fib_atTop, fib_zero, zeckendorf_of_pos, fib_eq_zero, fastFibAux_eq, le_greatestFib, Real.fib_succ_sub_goldenConj_mul_fib, Int.fib_of_odd, le_fib_add_one, Real.fib_succ_sub_goldenRatio_mul_fib, fib_add_one, Int.gcd_fib, gcd_fib_add_mul_self, Mathlib.Meta.NormNum.isFibAux_two_mul_done, zeckendorf_sum_fib

Theorems

NameKindAssumesProvesValidatesDepends On
fastFibAux_bit_false 📖mathematicalfastFibAux
bit
fastFibAux.eq_1
binaryRec_eq
mul_one
tsub_zero
instOrderedSub
MulZeroClass.zero_mul
one_pow
zero_pow
instCharZero
instAtLeastTwoHAddOfNat
add_zero
fastFibAux_bit_true 📖mathematicalfastFibAux
bit
fastFibAux.eq_1
binaryRec_eq
mul_one
tsub_zero
instOrderedSub
MulZeroClass.zero_mul
one_pow
zero_pow
instCharZero
instAtLeastTwoHAddOfNat
add_zero
fastFibAux_eq 📖mathematicalfastFibAux
fib
zero_add
fastFibAux_bit_false
fib_two_mul
fib_two_mul_add_one
fastFibAux_bit_true
fib_two_mul_add_two
fastFib_eq 📖mathematicalfastFib
fib
fastFib.eq_1
fastFibAux_eq
fast_fib_aux_bit_ff 📖mathematicalfastFibAux
bit
fastFibAux_bit_false
fast_fib_aux_bit_tt 📖mathematicalfastFibAux
bit
fastFibAux_bit_true
fast_fib_aux_eq 📖mathematicalfastFibAux
fib
fastFibAux_eq
fast_fib_eq 📖mathematicalfastFib
fib
fastFib_eq
fib_add 📖mathematicalfibadd_zero
MulZeroClass.mul_zero
zero_add
mul_one
add_comm
add_assoc
fib_add_two
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
fib_add_one 📖mathematicalfibfib_add_two
fib_add_two 📖mathematicalfibFunction.iterate_succ_apply'
fib_add_two_strictMono 📖mathematicalStrictMono
instPreorder
fib
strictMono_nat_of_lt_succ
add_right_comm
fib_lt_fib_succ
self_le_add_left
instCanonicallyOrderedAdd
fib_add_two_sub_fib_add_one 📖mathematicalfibfib_add_two
add_tsub_cancel_right
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
fib_coprime_fib_succ 📖mathematicalfibzero_add
fib_add_two
fib_dvd 📖mathematicalfibfib_gcd
fib_eq_fastFib 📖mathematicalfib
fastFib
fastFib_eq
fib_eq_zero 📖mathematicalfibfib_add_two
instCharZero
instAtLeastTwoHAddOfNat
fib_gcd 📖mathematicalfibgcd_fib_add_mul_self
fib_le_fib_succ 📖mathematicalfibzero_add
instCanonicallyOrderedAdd
fib_add_two
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
fib_lt_fib 📖mathematicalfibinstCanonicallyOrderedAdd
StrictMonoOn.lt_iff_lt
fib_strictMonoOn
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
fib_lt_fib_succ 📖mathematicalfibExistsAddOfLE.exists_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
tsub_pos_iff_lt
instOrderedSub
add_comm
add_right_comm
fib_add_two
add_tsub_cancel_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
fib_pos
fib_mono 📖mathematicalMonotone
instPreorder
fib
monotone_nat_of_le_succ
fib_le_fib_succ
fib_one 📖mathematicalfib
fib_pos 📖mathematicalfibinstCanonicallyOrderedAdd
fib_strictMonoOn 📖mathematicalStrictMonoOn
instPreorder
fib
Set.Ici
fib_add_two_strictMono
lt_of_add_lt_add_right
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
fib_succ_eq_succ_sum 📖mathematicalfib
Finset.sum
instAddCommMonoid
Finset.range
zero_add
fib_add_two
add_assoc
Finset.sum_congr
Finset.range_add_one
Finset.sum_insert
fib_succ_eq_sum_choose 📖mathematicalfib
Finset.sum
instAddCommMonoid
Finset.HasAntidiagonal.antidiagonal
instAddMonoid
Finset.Nat.instHasAntidiagonal
choose
fib_add_two
succ_injective
Finset.Nat.antidiagonal_succ_succ'
Finset.Nat.antidiagonal_succ'
Finset.sum_congr
Finset.cons_eq_insert
Finset.sum_insert
choose_zero_right
Finset.sum_map
add_left_comm
Finset.cons.congr_simp
instCharZero
instAtLeastTwoHAddOfNat
Finset.sum_add_distrib
zero_add
fib_two 📖mathematicalfib
fib_two_mul 📖mathematicalfibMulZeroClass.mul_zero
zero_add
mul_one
tsub_zero
instOrderedSub
MulZeroClass.zero_mul
instAtLeastTwoHAddOfNat
two_mul
add_assoc
fib_add
fib_add_two
add_tsub_cancel_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
fib_two_mul_add_one 📖mathematicalfib
Monoid.toNatPow
instMonoid
instAtLeastTwoHAddOfNat
two_mul
fib_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_gt
fib_two_mul_add_two 📖mathematicalfibfib_add_two
fib_two_mul
fib_two_mul_add_one
le_trans
fib_le_fib_succ
two_pos
instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_comm
instAtLeastTwoHAddOfNat
cast_add
cast_mul
cast_sub
cast_pow
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
fib_zero 📖mathematicalfib
gcd_fib_add_mul_self 📖mathematicalfibMulZeroClass.zero_mul
add_zero
add_mul
Distrib.rightDistribClass
add_assoc
one_mul
gcd_fib_add_self
gcd_fib_add_self 📖mathematicalfibzero_add
fib_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Tactic.RingNF.add_assoc_rev
add_comm
fib_coprime_fib_succ
le_fib_add_one 📖mathematicalfibzero_le_one
instZeroLEOneClass
one_le_two
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_rfl
LE.le.trans
le_fib_self
le_add_self
instCanonicallyOrderedAdd
le_fib_self 📖mathematicalfible_refl
fib_lt_fib_succ
le_trans

---

← Back to Index