Documentation Verification Report

Zeckendorf

📁 Source: Mathlib/Data/Nat/Fib/Zeckendorf.lean

Statistics

MetricCount
DefinitionsIsZeckendorfRep, greatestFib, zeckendorf, zeckendorfEquiv
4
Theoremssum_fib_lt, IsZeckendorfRep_nil, fib_greatestFib_le, greatestFib_eq_zero, greatestFib_fib, greatestFib_lt, greatestFib_mono, greatestFib_ne_zero, greatestFib_pos, greatestFib_sub_fib_greatestFib_le_greatestFib, isZeckendorfRep_zeckendorf, le_greatestFib, lt_fib_greatestFib_add_one, sum_zeckendorf_fib, zeckendorf_of_pos, zeckendorf_succ, zeckendorf_sum_fib, zeckendorf_zero, instIsTransNatLeHAddOfNat
19
Total23

List

Definitions

NameCategoryTheorems
IsZeckendorfRep 📖MathDef
2 mathmath: IsZeckendorfRep_nil, Nat.isZeckendorfRep_zeckendorf

Theorems

NameKindAssumesProvesValidatesDepends On
IsZeckendorfRep_nil 📖mathematicalIsZeckendorfRep

List.IsZeckendorfRep

Theorems

NameKindAssumesProvesValidatesDepends On
sum_fib_lt 📖mathematicalList.IsZeckendorfRepMulZeroClass.toZero
Nat.instMulZeroClass
Nat.fib
Nat.fib_pos
lt_tsub_iff_right
Nat.instOrderedSub
instIsTransNatLeHAddOfNat
add_lt_add_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
zero_add
add_comm
Nat.fib_add_one
LT.lt.ne'
LE.le.trans_lt'
zero_lt_two
Nat.instZeroLEOneClass
Nat.fib_mono

Nat

Definitions

NameCategoryTheorems
greatestFib 📖CompOp
11 mathmath: greatestFib_pos, lt_fib_greatestFib_add_one, greatestFib_fib, greatestFib_lt, greatestFib_eq_zero, fib_greatestFib_le, greatestFib_sub_fib_greatestFib_le_greatestFib, zeckendorf_succ, zeckendorf_of_pos, le_greatestFib, greatestFib_mono
zeckendorf 📖CompOp
6 mathmath: zeckendorf_zero, isZeckendorfRep_zeckendorf, sum_zeckendorf_fib, zeckendorf_succ, zeckendorf_of_pos, zeckendorf_sum_fib
zeckendorfEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
fib_greatestFib_le 📖mathematicalfib
greatestFib
findGreatest_spec
greatestFib_eq_zero 📖mathematicalgreatestFibfindGreatest_eq_zero_iff
zero_lt_one
instZeroLEOneClass
le_add_self
instCanonicallyOrderedAdd
greatestFib_fib 📖mathematicalgreatestFib
fib
findGreatest_eq_iff
le_fib_add_one
le_rfl
LT.lt.not_ge
fib_lt_fib
le_add_self
instCanonicallyOrderedAdd
greatestFib_lt 📖mathematicalgreatestFib
fib
lt_iff_lt_of_le_iff_le
le_greatestFib
greatestFib_mono 📖mathematicalMonotone
instPreorder
greatestFib
findGreatest_mono
LE.le.trans'
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
greatestFib_ne_zero 📖Iff.not
greatestFib_eq_zero
greatestFib_pos 📖mathematicalgreatestFibinstCanonicallyOrderedAdd
greatestFib_sub_fib_greatestFib_le_greatestFib 📖mathematicalgreatestFib
fib
greatestFib_lt
tsub_lt_iff_right
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
fib_greatestFib_le
zero_add
Ne.bot_lt
fib_add_one
lt_fib_greatestFib_add_one
isZeckendorfRep_zeckendorf 📖mathematicalList.IsZeckendorfRep
zeckendorf
zeckendorf_zero
zeckendorf_succ
List.IsZeckendorfRep.eq_1
List.IsChain.cons
instCanonicallyOrderedAdd
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
le_greatestFib
le_add_self
add_le_of_le_tsub_right_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
greatestFib_sub_fib_greatestFib_le_greatestFib
zeckendorf_of_pos
le_greatestFib 📖mathematicalgreatestFib
fib
LE.le.trans
fib_mono
fib_greatestFib_le
le_findGreatest
le_fib_add_one
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_fib_greatestFib_add_one 📖mathematicalfib
greatestFib
greatestFib_lt
sum_zeckendorf_fib 📖mathematicalMulZeroClass.toZero
instMulZeroClass
fib
zeckendorf
zeckendorf.induct
zeckendorf_zero
zeckendorf_succ
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instOrderedSub
zeckendorf_of_pos 📖mathematicalzeckendorf
greatestFib
fib
zeckendorf_succ
zeckendorf_succ 📖mathematicalzeckendorf
greatestFib
fib
zeckendorf.eq_2
zeckendorf_sum_fib 📖mathematicalList.IsZeckendorfRepzeckendorf
MulZeroClass.toZero
instMulZeroClass
fib
zeckendorf_zero
LE.le.trans_lt'
instIsTransNatLeHAddOfNat
zero_add
zero_lt_two
instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
findGreatest.congr_simp
add_comm
add_assoc
LT.lt.ne'
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instCanonicallyOrderedAdd
le_add_of_le_right
le_fib_add_one
List.IsZeckendorfRep.sum_fib_lt
zeckendorf_of_pos
fib_pos
add_tsub_cancel_left
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
zeckendorf_zero 📖mathematicalzeckendorfzeckendorf.eq_1

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instIsTransNatLeHAddOfNat 📖mathematicalIsTransLE.le.trans
le_self_add
Nat.instCanonicallyOrderedAdd

---

← Back to Index