Documentation Verification Report

Basic

📁 Source: Mathlib/Data/Nat/GCD/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsdvd_mul_left, dvd_mul_right, eq_of_mul_eq_zero, lcm_eq_mul, mul_add_mul_ne_mul, of_dvd, of_dvd_left, of_dvd_right, symmetric, nat_lcm_left, nat_lcm_right, add_coprime_iff_left, add_coprime_iff_right, coprime_add_iff_left, coprime_add_iff_right, coprime_add_mul_left_left, coprime_add_mul_left_right, coprime_add_mul_right_left, coprime_add_mul_right_right, coprime_add_self_left, coprime_add_self_right, coprime_iff_isRelPrime, coprime_mul_left_add_left, coprime_mul_left_add_right, coprime_mul_right_add_left, coprime_mul_right_add_right, coprime_one_left_iff, coprime_one_right_iff, coprime_pow_left_iff, coprime_pow_right_iff, coprime_self_add_left, coprime_self_add_right, coprime_self_sub_left, coprime_self_sub_right, coprime_sub_self_left, coprime_sub_self_right, div_dvd_div_left, div_lcm_eq_div_gcd, div_mul_div, dvd_lcm_of_dvd_left, dvd_lcm_of_dvd_right, dvd_of_lcm_left_dvd, dvd_of_lcm_right_dvd, eq_one_of_dvd_coprimes, gcd_greatest, gcd_mul_gcd_eq_iff_dvd_mul_of_coprime, gcd_mul_of_coprime_of_dvd, not_coprime_zero_zero, pow_sub_one_gcd_pow_sub_one, pow_sub_one_mod_pow_sub_one
50
Total50

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
add_coprime_iff_left 📖
add_coprime_iff_right 📖
coprime_add_iff_left 📖
coprime_add_iff_right 📖
coprime_add_mul_left_left 📖
coprime_add_mul_left_right 📖
coprime_add_mul_right_left 📖
coprime_add_mul_right_right 📖
coprime_add_self_left 📖
coprime_add_self_right 📖
coprime_iff_isRelPrime 📖mathematicalIsRelPrime
instMonoid
dvd_rfl
coprime_mul_left_add_left 📖
coprime_mul_left_add_right 📖
coprime_mul_right_add_left 📖
coprime_mul_right_add_right 📖
coprime_one_left_iff 📖
coprime_one_right_iff 📖
coprime_pow_left_iff 📖mathematicalMonoid.toNatPow
instMonoid
coprime_pow_right_iff 📖mathematicalMonoid.toNatPow
instMonoid
coprime_pow_left_iff
coprime_self_add_left 📖
coprime_self_add_right 📖add_comm
coprime_add_self_right
coprime_self_sub_left 📖
coprime_self_sub_right 📖
coprime_sub_self_left 📖
coprime_sub_self_right 📖
div_dvd_div_left 📖div_mul_div
div_lcm_eq_div_gcd 📖div_dvd_div_left
div_mul_div 📖MulZeroClass.mul_zero
mul_assoc
dvd_lcm_of_dvd_left 📖Dvd.dvd.trans
dvd_lcm_of_dvd_right 📖Dvd.dvd.trans
dvd_of_lcm_left_dvd 📖Dvd.dvd.trans
dvd_of_lcm_right_dvd 📖Dvd.dvd.trans
eq_one_of_dvd_coprimes 📖isUnit_iff_dvd_one
coprime_iff_isRelPrime
gcd_greatest 📖dvd_antisymm
instIsCancelMulZero
Unique.instSubsingleton
gcd_mul_gcd_eq_iff_dvd_mul_of_coprime 📖dvd_antisymm
instIsCancelMulZero
Unique.instSubsingleton
gcd_mul_of_coprime_of_dvd 📖exists_eq_mul_left_of_dvd
one_mul
not_coprime_zero_zero 📖
pow_sub_one_gcd_pow_sub_one 📖mathematicalMonoid.toNatPow
instMonoid
pow_sub_one_mod_pow_sub_one 📖mathematicalMonoid.toNatPow
instMonoid
zero_pow_eq
zero_add
one_pow
pow_zero
lt_or_ge
pow_add
MulZeroClass.mul_zero

Nat.Coprime

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_mul_left 📖dvd_mul_of_dvd_right
dvd_mul_right 📖dvd_mul_of_dvd_left
eq_of_mul_eq_zero 📖
lcm_eq_mul 📖one_mul
mul_add_mul_ne_mul 📖mul_ne_zero
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
mul_ne_zero_iff
mul_comm
eq_zero_of_mul_eq_self_left
mul_assoc
of_dvd 📖of_dvd_right
of_dvd_left
of_dvd_left 📖
of_dvd_right 📖
symmetric 📖mathematicalSymmetric

Nat.Dvd.dvd

Theorems

NameKindAssumesProvesValidatesDepends On
nat_lcm_left 📖Nat.dvd_lcm_of_dvd_right
nat_lcm_right 📖Nat.dvd_lcm_of_dvd_left

---

← Back to Index