Documentation Verification Report

Prime

📁 Source: Mathlib/Data/Nat/GCD/Prime.lean

Statistics

MetricCount
DefinitionsPrime
1
Theoremsdvd_lcm, dvd_or_dvd_of_dvd_lcm, not_dvd_lcm
3
Total4

Nat

Definitions

NameCategoryTheorems
Prime 📖MathDef
187 mathmath: squarefree_and_prime_pow_iff_prime, Mathlib.Meta.NormNum.isNat_prime_0, ArithmeticFunction.vonMangoldt.summable_residueClass_non_primes_div, lucas_lehmer_sufficiency, ZMod.isCyclic_units_iff_of_odd, Primes.prodNatEquiv_symm_apply, IsPrimePow.exists_ordCompl_eq_one, CharP.char_prime_of_ne_zero, infinite_setOf_prime_modEq_one, DirichletCharacter.LSeries_eulerProduct_tprod, PNat.instFactPrimeValOfPrime, instFactPrimeValNat, not_prime_one, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, prime_of_mem_primeFactorsList, four_dvd_or_exists_odd_prime_and_dvd_of_two_lt, prime_iff_prime_int, prime_def_lt', ne_one_iff_exists_prime_dvd, frequently_atTop_modEq_one, prime_five, Primes.coe_pnat_nat, not_prime_of_mul_eq, not_bddAbove_setOf_prime, infinite_setOf_prime, Rat.HeightOneSpectrum.prime_natGenerator, prime_iff, schnirelmannDensity_setOf_prime, prime_seven, forall_exists_prime_gt_and_zmodEq, ZMod.isCyclic_units_iff, Chebyshev.psi_sub_theta_eq_sum_not_prime, FirstOrder.Field.ACF_zero_realize_iff_finite_ACF_prime_not_realize, prime_eleven, Ideal.isPrime_int_iff, ArithmeticFunction.vonMangoldt.support_residueClass_prime_div, Int.not_prime_of_int_mul, EulerProduct.eulerProduct_hasProd, AddGroup.is_simple_iff_prime_card, Rat.AbsoluteValue.is_prime_of_minimal_nat_zero_lt_and_lt_one, ArithmeticFunction.IsMultiplicative.eulerProduct_hasProd, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, tsum_eq_tsum_primes_of_support_subset_prime_powers, expChar_is_prime_or_one, primorial_add, primeFactors_eq_to_filter_divisors_prime, CharP.exists', isPrimePow_nat_iff, CharP.char_is_prime_of_pos, nth_prime_four_eq_eleven, Chebyshev.sum_PrimePow_eq_sum_sum, riemannZeta_eulerProduct_exp_log, Rat.AbsoluteValue.equiv_real_or_padic, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, prime_def_le_sqrt, frequently_atTop_prime_and_modEq, EulerProduct.eulerProduct_tprod, prime_def, exists_prime_addEquiv_ZMod, CharP.prime_ringChar, nth_prime_three_eq_seven, Primes.prodNatEquiv_apply, ArithmeticFunction.IsMultiplicative.eulerProduct_tprod, EulerProduct.prod_filter_prime_geometric_eq_tsum_factoredNumbers, sum_properDivisors_eq_one_iff_prime, isPrimePow_nat_iff_bounded, Prime.not_prime_pow', ArithmeticFunction.vonMangoldt.not_summable_residueClass_prime_div, EulerProduct.eulerProduct_completely_multiplicative_tprod, Primes.not_summable_one_div, FirstOrder.Field.finite_ACF_prime_not_realize_of_ACF_zero_realize, not_prime_iff_exists_dvd_lt, DirichletCharacter.summable_neg_log_one_sub_mul_prime_cpow, not_prime_of_dvd_of_ne, prime_mul_iff, forall_exists_prime_gt_and_modEq, PadicInt.coe_adicCompletionIntegersEquiv_apply, bertrand, Mathlib.Meta.NormNum.isNat_prime_2, mem_primeFactors_of_ne_zero, forall_exists_prime_gt_and_eq_mod, Cardinal.is_prime_iff, pepin_primality', pepin_primality, prod_pow_prime_padicValNat, EulerProduct.eulerProduct_completely_multiplicative_hasProd, Prime.nat_prime, isPrimePow_nat_iff_bounded_log, prime_two, properDivisors_eq_singleton_one_iff_prime, setOf_prime_and_eq_mod_infinite, lucas_primality, EulerProduct.summable_and_hasSum_factoredNumbers_prod_filter_prime_geometric, mem_primeFactorsList, Int.prime_ofNat_iff, EulerProduct.prod_filter_prime_tsum_eq_tsum_factoredNumbers, tprod_eq_tprod_primes_mul_tprod_primes_of_mulSupport_subset_prime_powers, Primes.coe_prodNatEquiv_apply, Group.is_simple_iff_prime_card, EulerProduct.eulerProduct_hasProd_mulIndicator, prime_iff_fac_equiv_neg_one, CharP.char_is_prime_or_zero, Mathlib.Meta.NormNum.not_prime_mul_of_ble, not_prime_iff_minFac_lt, Complex.norm_prime_cpow_le_one_half, prime_of_mem_primeFactors, FiniteField.card, exists_prime_and_dvd, CharP.char_is_prime_of_two_le, FirstOrder.Field.ACF_zero_realize_iff_infinite_ACF_prime_realize, primesBelow_succ, totient_eq_iff_prime, not_prime_of_dvd_of_lt, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, not_prime_zero, Primes.coe_nat_injective, Chebyshev.theta_eq_sum_Icc, infinite_setOf_prime_and_modEq, prime_iff_card_units, Ideal.isPrime_nat_iff, isPrimePow_iff_unique_prime_dvd, DirichletCharacter.LSeries_eulerProduct_hasProd, not_prime_iff_exists_dvd_ne, exists_ordCompl_eq_one_iff_isPrimePow, exists_prime_gt_modEq_one, fact_prime_two, DirichletCharacter.LSeries_eulerProduct_exp_log, minSqFac_prime, prime_three, fact_prime_three, prime_def_lt, Cardinal.nat_is_prime_iff, char_eq_expChar_iff, minFac_prime_iff, not_prime_mul, Prime.not_prime_pow, IsSimpleGroup.prime_card, IsSimpleAddGroup.prime_card, prime_nth_prime, Rat.AbsoluteValue.equiv_padic_of_bounded, mem_primeFactorsList', primeCounting'_nth_eq, add_two_le_nth_prime, tprod_eq_tprod_primes_of_mulSupport_subset_prime_powers, Mathlib.Meta.NormNum.isNat_prime_1, Primes.summable_rpow, CommGroup.is_simple_iff_isCyclic_and_prime_card, ArithmeticFunction.LSeries_zeta_eulerProduct_exp_log, nth_prime_zero_eq_two, lucas_primality_iff, PrimeMultiset.coeNat_prime, prime_iff_not_exists_mul_eq, prime_of_mem_primesBelow, CommGroup.is_simple_iff_prime_card, nth_prime_one_eq_three, AddCommGroup.is_simple_iff_prime_card, FiniteField.card', Rat.HeightOneSpectrum.valuation_equiv_padicValuation, ArithmeticFunction.cardFactors_eq_one_iff_prime, CharP.char_is_prime, not_prime_iff_exists_mul_eq, not_summable_one_div_on_primes, Int.prime_iff_natAbs_prime, prime_of_fac_equiv_neg_one, eq_two_pow_or_exists_odd_prime_and_dvd, irreducible_iff_nat_prime, riemannZeta_eulerProduct_tprod, exists_prime_lt_and_le_two_mul, nth_prime_two_eq_five, mem_primesBelow, factorization_eq_zero_iff, EulerProduct.summable_and_hasSum_factoredNumbers_prod_filter_prime_tsum, riemannZeta_eulerProduct_hasProd, exists_prime_lt_and_le_two_mul_eventually, Primes.coe_nat_inj, PrimeMultiset.coeNat_ofPrime, infinite_setOf_prime_and_eq_mod, jacobiSym.eq_neg_one_at_prime_divisor_of_eq_neg_one, exists_infinite_primes, mem_primeFactors, prime_def_minFac, minFac_prime, absNorm_under_prime, tsum_eq_tsum_primes_add_tsum_primes_of_support_subset_prime_powers, Prime.not_coprime_iff_dvd, EulerProduct.exp_tsum_primes_log_eq_tsum, prime_of_coprime

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_lcm 📖Nat.Primedvd_or_dvd_of_dvd_lcm
Nat.dvd_lcm_of_dvd_left
Nat.dvd_lcm_of_dvd_right
dvd_or_dvd_of_dvd_lcm 📖Nat.Primedvd_or_dvd
Dvd.dvd.trans
not_dvd_lcm 📖Nat.PrimeIff.not
dvd_lcm

---

← Back to Index