Documentation Verification Report

Init

📁 Source: Mathlib/Data/Nat/Init.lean

Statistics

MetricCount
Definitionsfoundational_algebra_order_theory, AtLeastTwo, decidableLoHi, decidableLoHiLe, decreasingInduction, decreasingInduction', leRec, leRecOn, pincerRecursion, strongRec', strongRecOn', strongSubRecursion, twoStepInduction
13
Theoremsnat_succ_le, neZero_sub_one, ne_one, one_lt, prop, toNeZero, case_strong_induction_on, decreasingInduction_self, decreasingInduction_succ, decreasingInduction_succ', decreasingInduction_succ_left, decreasingInduction_trans, diag_induction, div_lt_self', dvd_add_self_left, dvd_add_self_right, dvd_left_iff_eq, dvd_right_iff_eq, ext_div_mod, ext_div_mod_iff, forall_lt_succ, instAtLeastTwoHAddOfNat, instNeZeroNatAbsOfInt_mathlib, leRecOn_self, leRecOn_succ, leRecOn_succ', leRecOn_succ_left, leRecOn_trans, leRec_eq_leRec, leRec_self, leRec_succ, leRec_succ', leRec_succ_left, leRec_trans, le_div_two_iff_mul_two_le, le_induction, mul_def, not_pos_pow_dvd, not_two_dvd_bit1, of_le_succ, one_le_pow', rec_add_one, rec_one, rec_zero, sq_sub_sq, strongRec'_spec, strongRecOn'_beta, strong_induction_on, succ_pos', two_le_iff, two_lt_of_ne, two_mul_ne_two_mul_add_one, two_mul_odd_div_two
53
Total66

LT.lt

Theorems

NameKindAssumesProvesValidatesDepends On
nat_succ_le 📖

LibraryNote

Definitions

NameCategoryTheorems
foundational_algebra_order_theory 📖CompOp

Nat

Definitions

NameCategoryTheorems
AtLeastTwo 📖CompData
2 mathmath: instAtLeastTwoHAddOfNat, Mathlib.Meta.NormNum.instAtLeastTwo
decidableLoHi 📖CompOp
decidableLoHiLe 📖CompOp
decreasingInduction 📖CompOp
5 mathmath: decreasingInduction_trans, decreasingInduction_self, decreasingInduction_succ_left, decreasingInduction_succ, decreasingInduction_succ'
decreasingInduction' 📖CompOp
leRec 📖CompOp
7 mathmath: leRec_trans, ProbabilityTheory.Kernel.partialTraj_le_def, leRec_succ', leRec_succ_left, leRec_eq_leRec, leRec_succ, leRec_self
leRecOn 📖CompOp
9 mathmath: leRecOn_succ, leRecOn_surjective, leRecOn_succ', leRecOn_injective, leRecOn_trans, leRecOn_succ_left, leRecOn_self, Metric.inductiveLimitDist_eq_dist, FirstOrder.Language.DirectedSystem.coe_natLERec
pincerRecursion 📖CompOp
strongRec' 📖CompOp
1 mathmath: strongRec'_spec
strongRecOn' 📖CompOp
1 mathmath: strongRecOn'_beta
strongSubRecursion 📖CompOp
twoStepInduction 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
case_strong_induction_on 📖
decreasingInduction_self 📖mathematicaldecreasingInductionleRec_self
decreasingInduction_succ 📖mathematicaldecreasingInductionleRec_succ
decreasingInduction_succ' 📖mathematicaldecreasingInductionleRec_succ'
decreasingInduction_succ_left 📖mathematicaldecreasingInductiondecreasingInduction_trans
decreasingInduction_succ'
decreasingInduction_trans 📖mathematicaldecreasingInductiondecreasingInduction_self
decreasingInduction_succ
diag_induction 📖
div_lt_self' 📖
dvd_add_self_left 📖
dvd_add_self_right 📖
dvd_left_iff_eq 📖
dvd_right_iff_eq 📖
ext_div_mod 📖
ext_div_mod_iff 📖
forall_lt_succ 📖
instAtLeastTwoHAddOfNat 📖mathematicalAtLeastTwo
instNeZeroNatAbsOfInt_mathlib 📖
leRecOn_self 📖mathematicalleRecOnleRec_self
leRecOn_succ 📖mathematicalleRecOnleRec_succ
leRecOn_succ' 📖mathematicalleRecOnleRec_succ'
leRecOn_succ_left 📖mathematicalleRecOnleRec_succ_left
leRecOn_trans 📖mathematicalleRecOnleRec_trans
leRec_eq_leRec 📖mathematicalleRec
leRec_self 📖mathematicalleRec
leRec_succ 📖mathematicalleRecleRec.eq_2
Or.by_cases.eq_1
leRec_succ' 📖mathematicalleRecleRec_succ
leRec_self
leRec_succ_left 📖mathematicalleRecleRec_trans
leRec_succ'
leRec_trans 📖mathematicalleRecleRec_self
leRec_succ
le_div_two_iff_mul_two_le 📖
le_induction 📖
mul_def 📖
not_pos_pow_dvd 📖
not_two_dvd_bit1 📖
of_le_succ 📖
one_le_pow' 📖
rec_add_one 📖
rec_one 📖
rec_zero 📖
sq_sub_sq 📖
strongRec'_spec 📖mathematicalstrongRec'
strongRecOn'_beta 📖mathematicalstrongRecOn'strongRec'_spec
strong_induction_on 📖
succ_pos' 📖
two_le_iff 📖
two_lt_of_ne 📖
two_mul_ne_two_mul_add_one 📖
two_mul_odd_div_two 📖

Nat.AtLeastTwo

Theorems

NameKindAssumesProvesValidatesDepends On
neZero_sub_one 📖prop
ne_one 📖one_lt
one_lt 📖prop
prop 📖
toNeZero 📖one_lt

---

← Back to Index