Documentation Verification Report

Lattice

📁 Source: Mathlib/Data/Nat/Lattice.lean

Statistics

MetricCount
DefinitionsinstConditionallyCompleteLinearOrderBot, instInfSet, instLattice, instSupSet
4
Theoremseq_Ici_of_nonempty_of_upward_closed, iInf_const_zero, iInf_le_succ, iInf_le_succ', iInf_lt_succ, iInf_lt_succ', iInf_of_empty, iSup_le_succ, iSup_le_succ', iSup_lt_succ, iSup_lt_succ', iSup_of_not_bddAbove, nonempty_of_pos_sInf, nonempty_of_sInf_eq_succ, notMem_of_lt_sInf, sInf_add, sInf_add', sInf_def, sInf_empty, sInf_eq_zero, sInf_le, sInf_mem, sInf_upward_closed_eq_succ_iff, sSup_def, sSup_mem, sSup_of_not_bddAbove, sSup_eq_zero, biInter_le_succ, biInter_le_succ', biInter_lt_succ, biInter_lt_succ', biUnion_le_succ, biUnion_le_succ', biUnion_lt_succ, biUnion_lt_succ'
35
Total39

Nat

Definitions

NameCategoryTheorems
instConditionallyCompleteLinearOrderBot 📖CompOp
instInfSet 📖CompOp
70 mathmath: MeasureTheory.smul_le_stoppedValue_hittingBtwn, MeasureTheory.StronglyAdapted.isStoppingTime_upperCrossingTime, ENat.iInf_toNat, MeasureTheory.Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part, MeasureTheory.lowerCrossingTime_lt_upperCrossingTime, RingOfIntegers.exponent_eq_sInf, MeasureTheory.upcrossingsBefore_zero', MeasureTheory.Submartingale.stoppedValue_leastGE, Pi.addOrderOf_eq_sInf, NNReal.natCast_iInf, sInf_eq_zero, SimpleGraph.Colorable.chromaticNumber_eq_sInf, MeasureTheory.integral_mul_upcrossingsBefore_le_integral, MeasureTheory.upperCrossingTime_bound_eq, nth_zero, MeasureTheory.crossing_pos_eq, SimpleGraph.dist_eq_sInf, sInf_mem, MeasureTheory.stoppedValue_lowerCrossingTime, MeasureTheory.upperCrossingTime_lt_lowerCrossingTime, MeasureTheory.Submartingale.eLpNorm_stoppedAbove_le, Function.minimalPeriod_piMap, MeasureTheory.mul_integral_upcrossingsBefore_le_integral_pos_part_aux, MeasureTheory.StronglyAdapted.measurable_upcrossings, MeasureTheory.Submartingale.eLpNorm_stoppedAbove_le', sInf_def, MeasureTheory.StronglyAdapted.isStoppingTime_crossing, MeasureTheory.stoppedValue_upperCrossingTime, MeasureTheory.smul_le_stoppedValue_hitting, ENat.coe_iInf, MeasureTheory.upperCrossingTime_lt_bddAbove, MeasureTheory.upcrossings_eq_top_of_frequently_lt, nth_eq_sInf, MeasureTheory.upperCrossingTime_lt_nonempty, MeasureTheory.upcrossingsBefore_lt_of_exists_upcrossing, MeasureTheory.Submartingale.stoppedValue_leastGE_eLpNorm_le, MeasureTheory.upcrossingsBefore_le, MeasureTheory.Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part, ENat.coe_sInf, Pi.orderOf_eq_sInf, MeasureTheory.StronglyAdapted.measurable_upcrossingsBefore, MeasureTheory.norm_stoppedValue_leastGE_le, Function.minimalPeriod_eq_sInf_n_pos_IsPeriodicPt, AddMonoid.exponent_eq_sInf, sInf_le, MeasureTheory.upcrossingsBefore_eq_sum, MeasureTheory.Submartingale.stoppedAbove, sInf_empty, sInf_upward_closed_eq_succ_iff, MeasureTheory.upcrossingsBefore_zero, MeasureTheory.upperCrossingTime_eq_of_bound_le, Monoid.exponent_eq_sInf, MeasureTheory.Submartingale.upcrossings_ae_lt_top', iInf_of_empty, MeasureTheory.StronglyAdapted.isStoppingTime_lowerCrossingTime, eq_Ici_of_nonempty_of_upward_closed, MeasureTheory.StronglyAdapted.integrable_upcrossingsBefore, MeasureTheory.upperCrossingTime_lt_succ, MeasureTheory.stoppedAbove_le, Int.absNorm_under_eq_sInf, nth_count_eq_sInf, MeasureTheory.upcrossingsBefore_mono, MeasureTheory.mul_upcrossingsBefore_le, MeasureTheory.upcrossings_lt_top_iff, iInf_const_zero, MeasureTheory.upcrossingsBefore_pos_eq, Set.Nonempty.eq_Icc_iff_nat, MeasureTheory.exists_upperCrossingTime_eq, MeasureTheory.Submartingale.stoppedValue_leastGE_eLpNorm_le', Submodule.spanFinrank_eq_iInf
instLattice 📖CompOp
19 mathmath: MonomialOrder.sPolynomial_leadingTerm_mul', MvPolynomial.degreeOf_sum_le, MvPolynomial.totalDegree_eq, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, nilpotencyClass_pi, Multiset.uIcc_eq, MvPolynomial.weightedTotalDegree_one, MonomialOrder.sPolynomial_def, MvPolynomial.degreeOf_eq_sup, MonomialOrder.sPolynomial_monomial_mul, MonomialOrder.sPolynomial_monomial_mul', MvPolynomial.totalDegree_finset_sum, MvPolynomial.weightedTotalDegree_rename_of_injective, MonomialOrder.degree_sPolynomial_le, MonomialOrder.coeff_sPolynomial_sup_eq_zero, MonomialOrder.degree_sPolynomial_lt_sup_degree, MonomialOrder.sPolynomial_mul_monomial, MonomialOrder.sPolynomial_leadingTerm_mul, MonomialOrder.degree_sPolynomial
instSupSet 📖CompOp
16 mathmath: sSup_def, sSup_of_not_bddAbove, sSup_mem, ENat.coe_sSup, iSup_of_not_bddAbove, ENat.coe_iSup, AddMonoid.exponent_eq_iSup_addOrderOf, NNReal.natCast_iSup, Set.Infinite.Nat.sSup_eq_zero, Monoid.exponent_eq_iSup_orderOf, RootPairing.chainBotCoeff_eq_sSup, AddMonoid.exponent_eq_iSup_addOrderOf', RootPairing.chainTopCoeff_eq_sSup, SSet.Subcomplex.Pairing.rank'_eq, Set.Nonempty.eq_Icc_iff_nat, Monoid.exponent_eq_iSup_orderOf'

Theorems

NameKindAssumesProvesValidatesDepends On
eq_Ici_of_nonempty_of_upward_closed 📖mathematicalSet.Nonempty
Set
Set.instMembership
Set.Ici
instPreorder
InfSet.sInf
instInfSet
Set.ext
sInf_le
sInf_mem
iInf_const_zero 📖mathematicaliInf
instInfSet
isEmpty_or_nonempty
iInf_of_empty
sInf_eq_zero
Set.range_const
iInf_le_succ 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
iSup_le_succ
iInf_le_succ' 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
iSup_le_succ'
iInf_lt_succ 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
iSup_lt_succ
iInf_lt_succ' 📖mathematicaliInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
iSup_lt_succ'
iInf_of_empty 📖mathematicaliInf
instInfSet
iInf_of_isEmpty
sInf_empty
iSup_le_succ 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
iSup_congr_Prop
iSup_lt_succ
iSup_le_succ' 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
iSup_congr_Prop
iSup_lt_succ'
iSup_lt_succ 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
iSup_congr_Prop
biSup_le_eq_sup
iSup_lt_succ' 📖mathematicaliSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
sup_iSup_nat_succ
iSup_congr_Prop
iSup_pos
iSup_of_not_bddAbove 📖mathematicalBddAbove
Set.range
iSup
instSupSet
sSup_of_not_bddAbove
nonempty_of_pos_sInf 📖mathematicalInfSet.sInf
instInfSet
Set.NonemptysInf_eq_zero
Set.not_nonempty_iff_eq_empty
nonempty_of_sInf_eq_succ 📖mathematicalInfSet.sInf
instInfSet
Set.Nonemptynonempty_of_pos_sInf
notMem_of_lt_sInf 📖mathematicalInfSet.sInf
instInfSet
Set
Set.instMembership
Set.eq_empty_or_nonempty
Set.notMem_empty
find_min
sInf_def
sInf_add 📖InfSet.sInf
instInfSet
setOf
Set.eq_empty_or_nonempty
sInf_empty
zero_add
LE.le.eq_or_lt
csInf_mem
instWellFoundedLTNat
nonempty_of_pos_sInf
LE.le.trans_lt
Eq.subset
Set.instReflSubset
sInf_def
find_add
sInf_add' 📖InfSet.sInf
instInfSet
setOf
nonempty_of_pos_sInf
le_csInf
le_of_not_gt
notMem_of_lt_sInf
LT.lt.le
sInf_add
sInf_def 📖mathematicalSet.NonemptyInfSet.sInf
instInfSet
find
Set
Set.instMembership
sInf_empty 📖mathematicalInfSet.sInf
instInfSet
Set
Set.instEmptyCollection
sInf_eq_zero
sInf_eq_zero 📖mathematicalInfSet.sInf
instInfSet
Set
Set.instMembership
Set.instEmptyCollection
Set.eq_empty_or_nonempty
find.congr_simp
sInf_def
Set.Nonempty.ne_empty
sInf_le 📖mathematicalSet
Set.instMembership
InfSet.sInf
instInfSet
sInf_def
find_min'
sInf_mem 📖mathematicalSet.NonemptySet
Set.instMembership
InfSet.sInf
instInfSet
sInf_def
find_spec
sInf_upward_closed_eq_succ_iff 📖mathematicalSet
Set.instMembership
InfSet.sInf
instInfSet
eq_Ici_of_nonempty_of_upward_closed
nonempty_of_sInf_eq_succ
Set.mem_Ici
le_rfl
sInf_def
find_eq_iff
sSup_def 📖mathematicalSupSet.sSup
instSupSet
find
sSup_mem 📖mathematicalSet.Nonempty
BddAbove
Set
Set.instMembership
SupSet.sSup
instSupSet
Set.Nonempty.csSup_mem
Set.Finite.subset
Set.finite_le_nat
sSup_of_not_bddAbove 📖mathematicalBddAboveSupSet.sSup
instSupSet
Set.Infinite.Nat.sSup_eq_zero
Set.infinite_of_not_bddAbove
SemilatticeSup.instIsDirectedOrder

Set

Theorems

NameKindAssumesProvesValidatesDepends On
biInter_le_succ 📖mathematicaliInter
Set
instInter
Nat.iInf_le_succ
biInter_le_succ' 📖mathematicaliInter
Set
instInter
Nat.iInf_le_succ'
biInter_lt_succ 📖mathematicaliInter
Set
instInter
Nat.iInf_lt_succ
biInter_lt_succ' 📖mathematicaliInter
Set
instInter
Nat.iInf_lt_succ'
biUnion_le_succ 📖mathematicaliUnion
Set
instUnion
Nat.iSup_le_succ
biUnion_le_succ' 📖mathematicaliUnion
Set
instUnion
Nat.iSup_le_succ'
biUnion_lt_succ 📖mathematicaliUnion
Set
instUnion
Nat.iSup_lt_succ
biUnion_lt_succ' 📖mathematicaliUnion
Set
instUnion
Nat.iSup_lt_succ'

Set.Infinite.Nat

Theorems

NameKindAssumesProvesValidatesDepends On
sSup_eq_zero 📖mathematicalSet.InfiniteSupSet.sSup
Nat.instSupSet
Set.Infinite.exists_gt
LE.le.not_gt

---

← Back to Index