Documentation Verification Report

Log

📁 Source: Mathlib/Data/Nat/Log.lean

Statistics

MetricCount
Definitionsclog, go, go
3
Theoremsadd_pred_div_lt, go_spec, clog_anti_left, clog_antitone_left, clog_eq_clog_succ_iff, clog_eq_one, clog_le_iff_le_pow, clog_le_of_le_pow, clog_lt_clog_succ_iff, clog_mono, clog_mono_right, clog_monotone, clog_of_left_le_one, clog_of_one_lt, clog_of_right_le_one, clog_of_two_le, clog_one_left, clog_one_right, clog_pos, clog_pow, clog_pow_left, clog_zero_left, clog_zero_right, le_log_iff_pow_le, le_log_of_pow_le, le_pow_clog, le_pow_iff_clog_le, go_spec, log2_eq_log_two, log_anti_left, log_antitone_left, log_div_base, log_div_base_pow, log_div_mul_self, log_eq_iff, log_eq_log_succ_iff, log_eq_of_pow_le_of_lt_pow, log_eq_one_iff, log_eq_one_iff', log_eq_zero_iff, log_le_clog, log_le_self, log_lt_iff_lt_pow, log_lt_log_succ_iff, log_lt_of_lt_pow, log_lt_of_lt_pow', log_lt_self, log_mono, log_mono_right, log_monotone, log_mul_base, log_of_left_le_one, log_of_lt, log_of_one_lt_of_le, log_one_left, log_one_right, log_pos, log_pos_iff, log_pow, log_pow_left, log_two_bit, log_zero_left, log_zero_right, lt_clog_iff_pow_lt, lt_pow_iff_log_lt, lt_pow_of_log_lt, lt_pow_succ_log_self, pow_le_iff_le_log, pow_le_of_le_log, pow_log_le_add_one, pow_log_le_self, pow_lt_iff_lt_clog, pow_lt_of_lt_clog, pow_pred_clog_lt_self
74
Total77

Nat

Definitions

NameCategoryTheorems
clog 📖CompOp
33 mathmath: le_pow_iff_clog_le, clog_of_right_le_one, clog_one_left, clog_antitone_left, lt_clog_iff_pow_lt, clog_le_iff_le_pow, clog_monotone, Real.natCeil_logb_natCast, clog_pow_left, clog_of_two_le, le_pow_clog, clog_eq_clog_succ_iff, pow_pred_clog_lt_self, Int.clog_of_one_le_right, clog_pow, clog_lt_clog_succ_iff, log_le_clog, clog_zero_left, Int.clog_natCast, clog_of_left_le_one, clog_one_right, clog_zero_right, clog_mono, clog_eq_one, Int.log_of_right_le_one, Mathlib.Meta.NormNum.nat_clog_helper, Int.clog_ofNat, pow_lt_iff_lt_clog, clog_pos, clog_mono_right, clog_of_one_lt, clog_le_of_le_pow, clog_anti_left

Theorems

NameKindAssumesProvesValidatesDepends On
add_pred_div_lt 📖
clog_anti_left 📖mathematicalclogclog_le_iff_le_pow
lt_of_lt_of_le
le_pow_clog
clog_antitone_left 📖mathematicalAntitoneOn
instPreorder
clog
Set.Ioi
clog_anti_left
Set.mem_Iio
clog_eq_clog_succ_iff 📖mathematicalclogclog_lt_clog_succ_iff
not_lt
clog_monotone
clog_eq_one 📖mathematicalclogclog_of_two_le
LE.le.trans
clog_of_right_le_one
clog_le_iff_le_pow 📖mathematicalclogclog.fun_cases_unfolding
clog.go_spec
clog_le_of_le_pow 📖mathematicalclogclog_le_iff_le_pow
clog_lt_clog_succ_iff 📖mathematicalclogle_antisymm
lt_clog_iff_pow_lt
le_pow_clog
clog_mono 📖mathematicalclogLE.le.trans
clog_anti_left
clog_mono_right
clog_mono_right 📖mathematicalclogle_or_gt
clog_of_left_le_one
clog_le_iff_le_pow
LE.le.trans
le_pow_clog
clog_monotone 📖mathematicalMonotone
instPreorder
clog
clog_mono_right
clog_of_left_le_one 📖mathematicalclog
clog_of_one_lt 📖mathematicalclogeq_of_forall_ge_iff
clog_pos
clog_of_right_le_one 📖mathematicalclog
clog_of_two_le 📖mathematicalclogclog_of_one_lt
clog_one_left 📖mathematicalclogclog_of_left_le_one
le_rfl
clog_one_right 📖mathematicalclogclog_of_right_le_one
le_rfl
clog_pos 📖mathematicalclogclog.eq_1
clog_pow 📖mathematicalclogeq_of_forall_ge_iff
clog_le_iff_le_pow
clog_pow_left 📖mathematicalclogclog_one_left
eq_of_forall_lt_iff
lt_clog_iff_pow_lt
clog_zero_left 📖mathematicalclogclog_of_left_le_one
clog_zero_right 📖mathematicalclogclog_of_right_le_one
le_log_iff_pow_le 📖mathematicallogle_iff_le_iff_lt_iff_lt
log_lt_iff_lt_pow
le_log_of_pow_le 📖mathematicallogne_or_eq
le_log_iff_pow_le
LE.le.not_gt
LT.lt.trans
le_pow_clog 📖mathematicalclogclog_le_iff_le_pow
le_rfl
le_pow_iff_clog_le 📖mathematicalclogclog_le_iff_le_pow
log2_eq_log_two 📖mathematicallogeq_or_ne
log_zero_right
eq_of_forall_le_iff
le_log_iff_pow_le
log_anti_left 📖mathematicallogeq_or_ne
log_zero_right
le_refl
le_log_of_pow_le
pow_log_le_self
log_antitone_left 📖mathematicalAntitoneOn
instPreorder
log
Set.Ioi
log_anti_left
Set.mem_Iio
log_div_base 📖mathematicallogle_or_gt
log_of_left_le_one
lt_or_ge
log_of_lt
log_zero_right
log_of_one_lt_of_le
log_div_base_pow 📖mathematicalloglog_div_base
log_div_mul_self 📖mathematicallogle_or_gt
log_of_left_le_one
lt_or_ge
log_zero_right
log_of_lt
log_mul_base
LT.lt.ne'
log_div_base
log_pos
log_eq_iff 📖mathematicallogem
le_antisymm_iff
le_log_iff_pow_le
log_lt_iff_lt_pow
not_lt
not_and_or
log_zero_left
log_one_left
log_zero_right
log_eq_log_succ_iff 📖mathematicalloglog_lt_log_succ_iff
not_lt
log_monotone
log_eq_of_pow_le_of_lt_pow 📖mathematicallogeq_or_ne
log_of_lt
log_eq_iff
log_eq_one_iff 📖mathematicalloglog_eq_one_iff'
LE.le.trans_lt
log_eq_one_iff' 📖mathematicalloglog_eq_iff
log_eq_zero_iff 📖mathematicallogeq_or_ne
log_lt_iff_lt_pow
log_of_left_le_one
log_le_clog 📖mathematicallog
clog
le_or_gt
log_of_left_le_one
log_zero_right
LE.le.trans
pow_log_le_self
le_pow_clog
log_le_self 📖mathematicalloglog_zero_right
LT.lt.le
log_lt_self
log_lt_iff_lt_pow 📖mathematicalloglog.go_spec
log.eq_1
log_lt_log_succ_iff 📖mathematicallogle_antisymm
pow_log_le_self
lt_pow_of_log_lt
log_lt_of_lt_pow
log_lt_of_lt_pow 📖mathematicalloglt_imp_lt_of_le_imp_le
pow_le_of_le_log
log_lt_of_lt_pow' 📖mathematicallogeq_or_ne
log_lt_of_lt_pow
log_lt_self 📖mathematicallogle_or_gt
log_of_left_le_one
log_lt_of_lt_pow
log_mono 📖mathematicallogLE.le.trans
log_anti_left
log_mono_right
log_mono_right 📖mathematicalloglog_monotone
log_monotone 📖mathematicalMonotone
instPreorder
log
monotone_nat_of_le_succ
le_or_gt
log_of_left_le_one
le_log_of_pow_le
pow_log_le_add_one
log_mul_base 📖mathematicalloglog_eq_of_pow_le_of_lt_pow
pow_log_le_self
LT.lt.trans
lt_pow_succ_log_self
log_of_left_le_one 📖mathematicalloglog.eq_1
log_of_lt 📖mathematicalloglog.fun_cases_unfolding
log.go.fun_cases_unfolding
log_of_one_lt_of_le 📖mathematicallogeq_of_forall_gt_iff
log_lt_iff_lt_pow
log_one_left 📖mathematicalloglog_of_left_le_one
le_rfl
log_one_right 📖mathematicalloglog_eq_zero_iff
lt_or_ge
log_pos 📖mathematicalloglog_pos_iff
log_pos_iff 📖mathematicalloglog_eq_zero_iff
not_lt
not_le
log_pow 📖mathematicalloglog_eq_of_pow_le_of_lt_pow
le_rfl
log_pow_left 📖mathematicallogeq_or_ne
log_zero_right
log_one_left
eq_of_forall_le_iff
le_log_iff_pow_le
log_of_left_le_one
log_two_bit 📖mathematicallog
bit
log_div_mul_self
bit_div_two
log_mul_base
log_zero_left 📖mathematicalloglog_of_left_le_one
log_zero_right 📖mathematicalloglog_eq_zero_iff
le_total
lt_clog_iff_pow_lt 📖mathematicalcloglt_iff_lt_of_le_iff_le
clog_le_iff_le_pow
lt_pow_iff_log_lt 📖mathematicalloglog_lt_iff_lt_pow
lt_pow_of_log_lt 📖loglt_imp_lt_of_le_imp_le
le_log_of_pow_le
lt_pow_succ_log_self 📖mathematicalloglt_pow_of_log_lt
pow_le_iff_le_log 📖mathematicallogle_log_iff_pow_le
pow_le_of_le_log 📖logle_or_gt
log_of_left_le_one
le_log_iff_pow_le
pow_log_le_add_one 📖mathematicalloglog_zero_right
le_refl
LE.le.trans
pow_log_le_self
pow_log_le_self 📖mathematicallogpow_le_of_le_log
le_rfl
pow_lt_iff_lt_clog 📖mathematicalcloglt_clog_iff_pow_lt
pow_lt_of_lt_clog 📖cloglt_imp_lt_of_le_imp_le
clog_le_of_le_pow
pow_pred_clog_lt_self 📖mathematicalcloglt_clog_iff_pow_lt
LT.lt.ne'
clog_pos

Nat.clog

Definitions

NameCategoryTheorems
go 📖CompOp
1 mathmath: go_spec

Theorems

NameKindAssumesProvesValidatesDepends On
go_spec 📖mathematicalgo

Nat.log

Definitions

NameCategoryTheorems
go 📖CompOp
1 mathmath: go_spec

Theorems

NameKindAssumesProvesValidatesDepends On
go_spec 📖mathematicalgo

---

← Back to Index