Documentation Verification Report

Multiplicity

📁 Source: Mathlib/Data/Nat/Multiplicity.lean

Statistics

MetricCount
Definitions0
Theoremsdvd_choose_pow, dvd_choose_pow_iff, emultiplicity_choose, emultiplicity_choose', emultiplicity_choose_prime_pow, emultiplicity_choose_prime_pow_add_emultiplicity, emultiplicity_factorial, emultiplicity_factorial_le_div_pred, emultiplicity_factorial_mul, emultiplicity_factorial_mul_succ, emultiplicity_le_emultiplicity_choose_add, emultiplicity_mul, emultiplicity_one, emultiplicity_pow, emultiplicity_pow_self, emultiplicity_self, multiplicity_factorial_pow, pow_dvd_factorial_iff, sub_one_mul_multiplicity_factorial, emultiplicity_eq_card_pow_dvd, emultiplicity_two_factorial_lt
21
Total21

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
emultiplicity_eq_card_pow_dvd 📖mathematicallogemultiplicity
instMonoid
ENat
ENat.instNatCast
Finset.card
Finset.filter
Monoid.toNatPow
Finset.Ico
instPreorder
instLocallyFiniteOrder
finiteMultiplicity_iff
FiniteMultiplicity.emultiplicity_eq_multiplicity
card_Ico
add_tsub_cancel_right
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finset.ext
Finset.filter.congr_simp
FiniteMultiplicity.pow_dvd_iff_le_multiplicity
LT.lt.ne'
zero_dvd_iff
zero_pow
LE.le.trans_lt
le_log_of_pow_le
emultiplicity_two_factorial_lt 📖mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
instMonoid
factorial
ENat.instNatCast
Prime.prime
prime_two
MulZeroClass.mul_zero
zero_add
Prime.emultiplicity_one
zero_lt_one
IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
Prime.emultiplicity_factorial_mul
instAtLeastTwoHAddOfNat
two_mul
cast_add
WithTop.add_lt_add_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cast_mul
emultiplicity_eq_zero
two_not_dvd_two_mul_add_one
LT.lt.trans
cast_one
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
emultiplicity_mul
instIsCancelMulZero

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_choose_pow 📖mathematicalNat.PrimeNat.choose
Monoid.toNatPow
Nat.instMonoid
Ne.lt_or_gt
Nat.choose_eq_zero_of_lt
emultiplicity_ne_zero
LT.lt.not_ge
Ne.bot_lt
emultiplicity_choose_prime_pow_add_emultiplicity
LT.lt.le
emultiplicity_eq_coe
zero_add
dvd_choose_pow_iff 📖mathematicalNat.PrimeNat.choose
Monoid.toNatPow
Nat.instMonoid
Nat.choose_zero_right
ne_one
Nat.choose_self
dvd_choose_pow
emultiplicity_choose 📖mathematicalNat.Prime
Nat.log
emultiplicity
Nat.instMonoid
Nat.choose
ENat
ENat.instNatCast
Finset.card
Finset.filter
Monoid.toNatPow
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
emultiplicity_choose'
emultiplicity_choose' 📖mathematicalNat.Prime
Nat.log
emultiplicity
Nat.instMonoid
Nat.choose
ENat
ENat.instNatCast
Finset.card
Finset.filter
Monoid.toNatPow
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
emultiplicity_mul
mul_assoc
Nat.choose_mul_factorial_mul_factorial
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
emultiplicity_factorial
LE.le.trans_lt
Nat.log_mono_right
add_comm
Nat.multiplicity_choose_aux
Finset.sum_congr
Finset.filter.congr_simp
Nat.cast_add
Nat.cast_sum
WithTop.add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
finiteMultiplicity_iff_emultiplicity_ne_top
Nat.finiteMultiplicity_iff
ne_one
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.factorial_pos
emultiplicity_choose_prime_pow 📖mathematicalNat.Prime
Monoid.toNatPow
Nat.instMonoid
emultiplicity
Nat.choose
ENat
ENat.instNatCast
multiplicity
emultiplicity_choose_prime_pow_add_emultiplicity
FiniteMultiplicity.emultiplicity_eq_multiplicity
Nat.finiteMultiplicity_iff
ne_one
Nat.choose_pos
emultiplicity_choose_prime_pow_add_emultiplicity 📖mathematicalNat.Prime
Monoid.toNatPow
Nat.instMonoid
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
emultiplicity
Nat.choose
ENat.instNatCast
le_antisymm
Finset.filter.congr_simp
Nat.instNoMaxOrder
zero_add
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
pos
emultiplicity_choose
Nat.emultiplicity_eq_card_pow_dvd
one_lt
Ne.bot_lt
Nat.log_mono_right
Nat.cast_add
WithTop.coe_mono
Nat.log_pow
Finset.card_union_of_disjoint
Finset.filter_union_right
Finset.card_filter_le
Nat.card_Ico
emultiplicity_pow_self
emultiplicity_le_emultiplicity_choose_add
emultiplicity_factorial 📖mathematicalNat.Prime
Nat.log
emultiplicity
Nat.instMonoid
Nat.factorial
ENat
ENat.instNatCast
Finset.sum
Nat.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
Monoid.toNatPow
emultiplicity_one
Finset.sum_congr
Finset.sum_const_zero
Nat.cast_zero
Nat.factorial_succ
emultiplicity_mul
add_comm
LE.le.trans_lt
Nat.log_mono_right
Nat.emultiplicity_eq_card_pow_dvd
ne_one
Finset.sum_add_distrib
Finset.sum_boole
Nat.cast_sum
Nat.cast_add
emultiplicity_factorial_le_div_pred 📖mathematicalNat.PrimeENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
Nat.instMonoid
Nat.factorial
ENat.instNatCast
emultiplicity_factorial
WithTop.coe_mono
Nat.geom_sum_Ico_le
two_le
emultiplicity_factorial_mul 📖mathematicalNat.Primeemultiplicity
Nat.instMonoid
Nat.factorial
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
ENat.instNatCast
MulZeroClass.mul_zero
Nat.cast_zero
add_zero
emultiplicity_factorial_mul_succ
emultiplicity_mul
Nat.cast_add
Nat.cast_one
add_comm
add_assoc
emultiplicity_factorial_mul_succ 📖mathematicalNat.Primeemultiplicity
Nat.instMonoid
Nat.factorial
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
prime
two_le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_mul
Nat.cast_add
Nat.cast_one
emultiplicity_eq_top
Nat.finiteMultiplicity_iff
ne_one
Nat.factorial_pos
Finset.emultiplicity_prod
Nat.instIsCancelMulZero
Finset.sum_Ico_consecutive
add_assoc
AddLeftCancelSemigroup.toIsLeftCancelAdd
Finset.sum_Ico_succ_top
emultiplicity_mul
emultiplicity_self
Finset.sum_congr
emultiplicity_eq_zero
pos
Finset.mem_Ico
Finset.sum_const_zero
zero_add
add_comm
emultiplicity_le_emultiplicity_choose_add 📖mathematicalNat.PrimeENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
Nat.instMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.choose
Nat.choose_zero_right
emultiplicity_zero
add_top
top_add
emultiplicity_mul
emultiplicity_le_emultiplicity_of_dvd_right
Nat.add_one_mul_choose_eq
dvd_mul_right
emultiplicity_mul 📖mathematicalNat.Primeemultiplicity
Nat.instMonoid
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
emultiplicity_mul
Nat.instIsCancelMulZero
prime
emultiplicity_one 📖mathematicalNat.Primeemultiplicity
Nat.instMonoid
ENat
instZeroENat
emultiplicity_of_one_right
Prime.not_unit
prime
emultiplicity_pow 📖mathematicalNat.Primeemultiplicity
Nat.instMonoid
Monoid.toNatPow
ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
ENat.instNatCast
emultiplicity_pow
Nat.instIsCancelMulZero
prime
emultiplicity_pow_self 📖mathematicalNat.Primeemultiplicity
Nat.instMonoid
Monoid.toNatPow
ENat
ENat.instNatCast
emultiplicity_pow_self
Nat.instIsCancelMulZero
ne_zero
Prime.not_unit
prime
emultiplicity_self 📖mathematicalNat.Primeemultiplicity
Nat.instMonoid
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
FiniteMultiplicity.emultiplicity_self
Nat.instIsCancelMulZero
Nat.finiteMultiplicity_iff
ne_one
pos
multiplicity_factorial_pow 📖mathematicalNat.Primemultiplicity
Nat.instMonoid
Nat.factorial
Monoid.toNatPow
Finset.sum
Nat.instAddCommMonoid
Finset.range
FiniteMultiplicity.emultiplicity_eq_multiplicity
Nat.finiteMultiplicity_iff
ne_one
Nat.factorial_pos
pow_zero
emultiplicity_one
Nat.cast_zero
emultiplicity_factorial_mul
Finset.sum_range_succ
ENat.coe_add
pow_dvd_factorial_iff 📖mathematicalNat.Prime
Nat.log
Monoid.toNatPow
Nat.instMonoid
Nat.factorial
Finset.sum
Nat.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
WithTop.coe_le_coe
ENat.some_eq_coe
emultiplicity_factorial
pow_dvd_iff_le_emultiplicity
sub_one_mul_multiplicity_factorial 📖mathematicalNat.Primemultiplicity
Nat.instMonoid
Nat.factorial
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.digits
multiplicity_eq_of_emultiplicity_eq_some
emultiplicity_factorial
Finset.sum_Ico_add'
Nat.instIsOrderedCancelAddMonoid
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Finset.sum_congr
Nat.Ico_zero_eq_range

---

← Back to Index