📁 Source: Mathlib/Data/Nat/Multiplicity.lean
dvd_choose_pow
dvd_choose_pow_iff
emultiplicity_choose
emultiplicity_choose'
emultiplicity_choose_prime_pow
emultiplicity_choose_prime_pow_add_emultiplicity
emultiplicity_factorial
emultiplicity_factorial_le_div_pred
emultiplicity_factorial_mul
emultiplicity_factorial_mul_succ
emultiplicity_le_emultiplicity_choose_add
emultiplicity_mul
emultiplicity_one
emultiplicity_pow
emultiplicity_pow_self
emultiplicity_self
multiplicity_factorial_pow
pow_dvd_factorial_iff
sub_one_mul_multiplicity_factorial
emultiplicity_eq_card_pow_dvd
emultiplicity_two_factorial_lt
log
emultiplicity
instMonoid
ENat
ENat.instNatCast
Finset.card
Finset.filter
Monoid.toNatPow
Finset.Ico
instPreorder
instLocallyFiniteOrder
finiteMultiplicity_iff
FiniteMultiplicity.emultiplicity_eq_multiplicity
card_Ico
add_tsub_cancel_right
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finset.ext
Finset.filter.congr_simp
FiniteMultiplicity.pow_dvd_iff_le_multiplicity
LT.lt.ne'
zero_dvd_iff
zero_pow
LE.le.trans_lt
le_log_of_pow_le
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
factorial
Prime.prime
prime_two
MulZeroClass.mul_zero
zero_add
Prime.emultiplicity_one
zero_lt_one
IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
Prime.emultiplicity_factorial_mul
instAtLeastTwoHAddOfNat
two_mul
cast_add
WithTop.add_lt_add_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
cast_mul
emultiplicity_eq_zero
two_not_dvd_two_mul_add_one
LT.lt.trans
cast_one
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
instIsCancelMulZero
Nat.Prime
Nat.choose
Nat.instMonoid
Ne.lt_or_gt
Nat.choose_eq_zero_of_lt
emultiplicity_ne_zero
LT.lt.not_ge
Ne.bot_lt
LT.lt.le
emultiplicity_eq_coe
Nat.choose_zero_right
ne_one
Nat.choose_self
Nat.log
Nat.instPreorder
Nat.instLocallyFiniteOrder
mul_assoc
Nat.choose_mul_factorial_mul_factorial
Nat.instOrderedSub
Nat.instIsOrderedAddMonoid
Nat.log_mono_right
add_comm
Nat.multiplicity_choose_aux
Finset.sum_congr
Nat.cast_add
Nat.cast_sum
WithTop.add_right_cancel
finiteMultiplicity_iff_emultiplicity_ne_top
Nat.finiteMultiplicity_iff
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.factorial_pos
multiplicity
Nat.choose_pos
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
le_antisymm
Nat.instNoMaxOrder
pow_pos
Nat.instZeroLEOneClass
pos
Nat.emultiplicity_eq_card_pow_dvd
one_lt
WithTop.coe_mono
Nat.log_pow
Finset.card_union_of_disjoint
Finset.filter_union_right
Finset.card_filter_le
Nat.card_Ico
Nat.factorial
Finset.sum
Nat.instAddCommMonoid
Finset.sum_const_zero
Nat.cast_zero
Nat.factorial_succ
Finset.sum_add_distrib
Finset.sum_boole
Preorder.toLE
Nat.geom_sum_Ico_le
two_le
add_zero
Nat.cast_one
add_assoc
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
prime
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_mul
emultiplicity_eq_top
Finset.emultiplicity_prod
Nat.instIsCancelMulZero
Finset.sum_Ico_consecutive
Finset.sum_Ico_succ_top
Finset.mem_Ico
emultiplicity_zero
add_top
top_add
emultiplicity_le_emultiplicity_of_dvd_right
Nat.add_one_mul_choose_eq
dvd_mul_right
instZeroENat
emultiplicity_of_one_right
Prime.not_unit
Distrib.toMul
ne_zero
FiniteMultiplicity.emultiplicity_self
Finset.range
pow_zero
Finset.sum_range_succ
ENat.coe_add
WithTop.coe_le_coe
ENat.some_eq_coe
pow_dvd_iff_le_emultiplicity
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.digits
multiplicity_eq_of_emultiplicity_eq_some
Finset.sum_Ico_add'
Nat.instIsOrderedCancelAddMonoid
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.Ico_zero_eq_range
---
← Back to Index