Documentation Verification Report

Nth

πŸ“ Source: Mathlib/Data/Nat/Nth.lean

Statistics

MetricCount
DefinitionsgiCountNth, nth
2
Theoremscount_eq_zero, count_le_iff_le_nth, count_nth, count_nth_of_infinite, count_nth_of_lt_card_finite, count_nth_succ, count_nth_succ_of_infinite, count_nth_zero, eq_nth_of_strictMonoOn_of_mapsTo_of_surjOn, exists_lt_card_finite_nth_eq, exists_lt_card_nth_eq, filter_range_nth_eq_insert, filter_range_nth_eq_insert_of_finite, filter_range_nth_eq_insert_of_infinite, filter_range_nth_subset_insert, gc_count_nth, image_nth_Iio_card, isLeast_nth, isLeast_nth_of_infinite, isLeast_nth_of_lt_card, le_nth, le_nth_count, le_nth_count', le_nth_of_count_le, le_nth_of_lt_nth_succ, le_nth_of_monotoneOn_of_surjOn, le_of_nth_le_nth_of_lt_card, lt_card_toFinset_of_nth_ne_zero, lt_nth_iff_count_lt, lt_of_nth_lt_nth_of_lt_card, nth_add, nth_add_eq_sub, nth_add_one, nth_add_one_eq_sub, nth_apply_eq_orderIsoOfNat, nth_comp_of_strictMono, nth_count, nth_count_eq_sInf, nth_eq_getD_sort, nth_eq_orderEmbOfFin, nth_eq_orderIsoOfNat, nth_eq_sInf, nth_eq_zero, nth_eq_zero_mono, nth_false, nth_injOn, nth_injective, nth_le_nth, nth_le_nth', nth_le_nth_of_lt_card, nth_le_of_strictMonoOn_of_mapsTo, nth_lt_nth, nth_lt_nth', nth_lt_nth_of_lt_card, nth_lt_of_lt_count, nth_mem, nth_mem_anti, nth_mem_of_infinite, nth_mem_of_lt_card, nth_mem_of_ne_zero, nth_monotone, nth_ne_zero_anti, nth_of_card_le, nth_of_forall, nth_of_forall_not, nth_strictMono, nth_strictMonoOn, nth_true, nth_zero, nth_zero_of_exists, nth_zero_of_zero, range_nth_of_finite, range_nth_of_infinite, range_nth_subset, subset_range_nth, surjective_count_of_infinite_setOf
76
Total78

Nat

Definitions

NameCategoryTheorems
giCountNth πŸ“–CompOpβ€”
nth πŸ“–CompOp
75 mathmath: nth_zero_of_zero, nth_of_forall_not, nth_eq_zero, filter_range_nth_subset_insert, nth_monotone, nth_injective, nth_strictMono, filter_range_nth_eq_insert_of_finite, le_nth_count, nth_of_card_le, nth_mem, nth_zero, count_nth_of_lt_card_finite, nth_prime_four_eq_eleven, nth_le_of_strictMonoOn_of_mapsTo, exists_lt_card_finite_nth_eq, count_le_iff_le_nth, count_nth_succ_of_infinite, nth_prime_three_eq_seven, nth_le_nth_of_lt_card, nth_add_one_eq_sub, isLeast_nth, gc_count_nth, nth_le_nth', isLeast_nth_of_infinite, nth_true, nth_eq_sInf, nth_zero_of_exists, nth_lt_nth', exists_lt_card_nth_eq, nth_lt_nth, nth_apply_eq_orderIsoOfNat, nth_injOn, nth_mem_of_lt_card, nth_mem_of_infinite, range_nth_subset, nth_mem_of_ne_zero, count_nth, nth_strictMonoOn, prime_nth_prime, le_nth_count', count_nth_of_infinite, primeCounting'_nth_eq, add_two_le_nth_prime, nth_add_one, nth_eq_orderEmbOfFin, nth_prime_zero_eq_two, nth_false, nth_eq_getD_sort, nth_prime_one_eq_three, le_nth, count_nth_succ, nth_le_nth, range_nth_of_finite, nth_count, lt_nth_iff_count_lt, eq_nth_of_strictMonoOn_of_mapsTo_of_surjOn, range_nth_of_infinite, nth_prime_two_eq_five, nth_lt_nth_of_lt_card, count_eq_zero, nth_eq_orderIsoOfNat, filter_range_nth_eq_insert_of_infinite, nth_count_eq_sInf, isLeast_nth_of_lt_card, nth_comp_of_strictMono, nth_lt_of_lt_count, nth_add_eq_sub, nth_add, filter_range_nth_eq_insert, nth_of_forall, subset_range_nth, count_nth_zero, image_nth_Iio_card, le_nth_of_monotoneOn_of_surjOn

Theorems

NameKindAssumesProvesValidatesDepends On
count_eq_zero πŸ“–mathematicalβ€”count
nth
β€”nth_zero_of_exists
le_find_iff
count_iff_forall_not
count_le_iff_le_nth πŸ“–mathematicalSet.Infinite
setOf
count
nth
β€”gc_count_nth
count_nth πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
count
nth
β€”count_nth_zero
count_eq_card_filter_range
filter_range_nth_eq_insert
Finset.card_insert_of_notMem
count_nth_of_infinite πŸ“–mathematicalSet.Infinite
setOf
count
nth
β€”count_nth
count_nth_of_lt_card_finite πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
count
nth
β€”count_nth
count_nth_succ πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
count
nth
β€”count_succ
count_nth
nth_mem
count_nth_succ_of_infinite πŸ“–mathematicalSet.Infinite
setOf
count
nth
β€”count_succ
count_nth_of_infinite
nth_mem_of_infinite
count_nth_zero πŸ“–mathematicalβ€”count
nth
β€”count_eq_card_filter_range
Finset.card_eq_zero
Finset.filter_eq_empty_iff
nth_zero
LT.lt.not_ge
Finset.mem_range
sInf_le
eq_nth_of_strictMonoOn_of_mapsTo_of_surjOn πŸ“–mathematicalSet.SurjOn
setOf
Set.MapsTo
StrictMonoOn
instPreorder
Set.EqOn
nth
β€”le_antisymm
le_nth_of_monotoneOn_of_surjOn
StrictMonoOn.monotoneOn
nth_le_of_strictMonoOn_of_mapsTo
exists_lt_card_finite_nth_eq πŸ“–mathematicalβ€”Finset.card
Set.Finite.toFinset
setOf
nth
β€”image_nth_Iio_card
Set.mem_setOf_eq
exists_lt_card_nth_eq πŸ“–mathematicalβ€”Finset.card
Set.Finite.toFinset
setOf
nth
β€”Set.finite_or_infinite
exists_lt_card_finite_nth_eq
range_nth_of_infinite
Set.mem_setOf_eq
filter_range_nth_eq_insert πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
Finset.filter
Finset.range
nth
Finset
Finset.instInsert
β€”HasSubset.Subset.antisymm
Finset.instAntisymmSubset
filter_range_nth_subset_insert
nth_lt_nth'
nth_mem
LT.lt.trans
filter_range_nth_eq_insert_of_finite πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
Finset.filter
Finset.range
nth
Finset
Finset.instInsert
β€”filter_range_nth_eq_insert
filter_range_nth_eq_insert_of_infinite πŸ“–mathematicalSet.Infinite
setOf
Finset.filter
Finset.range
nth
Finset
Finset.instInsert
β€”filter_range_nth_eq_insert
filter_range_nth_subset_insert πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
Finset.filter
Finset.range
nth
Finset.instInsert
β€”LE.le.eq_or_lt
le_nth_of_lt_nth_succ
gc_count_nth πŸ“–mathematicalSet.Infinite
setOf
GaloisConnection
instPreorder
count
nth
β€”GaloisInsertion.gc
image_nth_Iio_card πŸ“–mathematicalβ€”Set.image
nth
Set.Iio
instPreorder
Finset.card
Set.Finite.toFinset
setOf
β€”Set.ext
nth_eq_orderEmbOfFin
Finset.range_orderEmbOfFin
Set.Finite.coe_toFinset
isLeast_nth πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
IsLeast
nth
β€”nth_mem
nth_lt_nth'
exists_lt_card_nth_eq
lt_or_ge
LT.lt.ne
nth_le_nth'
isLeast_nth_of_infinite πŸ“–mathematicalSet.Infinite
setOf
IsLeast
nth
β€”isLeast_nth
isLeast_nth_of_lt_card πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
IsLeast
nth
β€”isLeast_nth
le_nth πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
nthβ€”Set.finite_or_infinite
StrictMonoOn.Iic_id_le
instIsSuccArchimedean
StrictMonoOn.mono
nth_strictMonoOn
Set.Iic_subset_Iio
le_rfl
StrictMono.id_le
instWellFoundedLTNat
nth_strictMono
le_nth_count πŸ“–mathematicalSet.Infinite
setOf
nth
count
β€”Set.Infinite.exists_gt
le_nth_count'
LT.lt.le
le_nth_count' πŸ“–mathematicalβ€”nth
count
β€”LE.le.trans
le_csInf
Eq.ge
nth_count_eq_sInf
le_nth_of_count_le πŸ“–mathematicalnthcountβ€”not_lt
LE.le.not_gt
nth_lt_of_lt_count
le_nth_of_lt_nth_succ πŸ“–β€”nthβ€”β€”Set.finite_or_infinite
exists_lt_card_finite_nth_eq
lt_or_ge
StrictMonoOn.le_iff_le
nth_strictMonoOn
LT.lt.trans
StrictMonoOn.lt_iff_lt
nth_of_card_le
LE.le.not_gt
subset_range_nth
nth_le_nth
nth_lt_nth
le_nth_of_monotoneOn_of_surjOn πŸ“–mathematicalSet.SurjOn
setOf
MonotoneOn
instPreorder
Finset.card
Set.Finite.toFinset
nthβ€”nth_zero
le_csInf
nth_mem
nth_eq_sInf
nth_lt_nth'
MonotoneOn.reflect_lt
le_of_nth_le_nth_of_lt_card πŸ“–β€”nth
Finset.card
Set.Finite.toFinset
setOf
β€”β€”not_lt
LE.le.not_gt
nth_lt_nth_of_lt_card
lt_card_toFinset_of_nth_ne_zero πŸ“–mathematicalβ€”Finset.card
Set.Finite.toFinset
setOf
β€”β€”
lt_nth_iff_count_lt πŸ“–mathematicalSet.Infinite
setOf
count
nth
β€”GaloisConnection.lt_iff_lt
gc_count_nth
lt_of_nth_lt_nth_of_lt_card πŸ“–β€”nth
Finset.card
Set.Finite.toFinset
setOf
β€”β€”not_le
LT.lt.not_ge
nth_le_nth_of_lt_card
nth_add πŸ“–mathematicalβ€”nthβ€”nth_comp_of_strictMono
StrictMono.add_const
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
strictMono_id
not_le
le_iff_exists_add'
instCanonicallyOrderedAdd
lt_card_toFinset_of_nth_ne_zero
nth_add_eq_sub πŸ“–mathematicalβ€”nthβ€”nth_add
nth_add_one πŸ“–mathematicalβ€”nthβ€”nth_add
nth_add_one_eq_sub πŸ“–mathematicalβ€”nthβ€”nth_add_eq_sub
nth_apply_eq_orderIsoOfNat πŸ“–mathematicalSet.Infinite
setOf
nth
Set
Set.instMembership
DFunLike.coe
OrderIso
Set.Elem
instFunLikeOrderIso
Subtype.orderIsoOfNat
Set.Infinite.to_subtype
β€”Set.Infinite.to_subtype
instIsTransLe
LE.total
nth.eq_1
nth_comp_of_strictMono πŸ“–mathematicalStrictMono
instPreorder
Set
Set.instMembership
Set.range
Finset.card
Set.Finite.toFinset
setOf
nthβ€”Set.ext
case_strong_induction_on
nth_zero
nth_mem
Monotone.map_csInf
instWellFoundedLTNat
StrictMono.monotone
Set.mem_setOf_eq
nth_eq_sInf
nth_lt_nth'
StrictMono.lt_iff_lt
LT.lt.trans
nth_count πŸ“–mathematicalβ€”nth
count
β€”count_lt_card
count_injective
nth_mem
count_nth
nth_count_eq_sInf πŸ“–mathematicalβ€”nth
count
InfSet.sInf
instInfSet
setOf
β€”nth_eq_sInf
Set.ext
not_lt
count_strict_mono
lt_self_iff_false
nth_count
lt_of_lt_of_le
nth_lt_of_lt_count
nth_eq_getD_sort πŸ“–mathematicalβ€”nth
Finset.sort
Set.Finite.toFinset
setOf
instIsTransLe
instPreorder
LE.total
instLinearOrder
β€”instIsTransLe
LE.total
nth_eq_orderEmbOfFin πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
nth
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
instFunLikeOrderEmbedding
Finset.orderEmbOfFin
β€”instIsTransLe
LE.total
nth_eq_getD_sort
instAntisymmLe
Finset.orderEmbOfFin_apply
List.getD_eq_getElem
nth_eq_orderIsoOfNat πŸ“–mathematicalSet.Infinite
setOf
nth
Set.Elem
Set
Set.instMembership
DFunLike.coe
OrderIso
instFunLikeOrderIso
Subtype.orderIsoOfNat
Set.Infinite.to_subtype
β€”Set.Infinite.to_subtype
nth_apply_eq_orderIsoOfNat
nth_eq_sInf πŸ“–mathematicalβ€”nth
InfSet.sInf
instInfSet
setOf
β€”IsLeast.csInf_eq
isLeast_nth
Mathlib.Tactic.Push.not_forall_eq
nth_of_card_le
Set.eq_empty_of_forall_notMem
exists_lt_card_nth_eq
LT.lt.false
LT.lt.trans_le
sInf_empty
nth_eq_zero πŸ“–mathematicalβ€”nth
Finset.card
Set.Finite.toFinset
setOf
β€”nth_mem
nonpos_iff_eq_zero
instCanonicallyOrderedAdd
le_nth
nth_zero_of_zero
nth_of_card_le
nth_eq_zero_mono πŸ“–β€”nthβ€”β€”LE.le.trans
nth_false πŸ“–mathematicalβ€”nthβ€”nth_of_forall_not
nth_injOn πŸ“–mathematicalβ€”Set.InjOn
nth
Set.Iio
instPreorder
Finset.card
Set.Finite.toFinset
setOf
β€”StrictMonoOn.injOn
nth_strictMonoOn
nth_injective πŸ“–mathematicalSet.Infinite
setOf
nthβ€”StrictMono.injective
nth_strictMono
nth_le_nth πŸ“–mathematicalSet.Infinite
setOf
nthβ€”StrictMono.le_iff_le
nth_strictMono
nth_le_nth' πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
nthβ€”Set.finite_or_infinite
nth_le_nth_of_lt_card
nth_le_nth
nth_le_nth_of_lt_card πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
nthβ€”StrictMonoOn.monotoneOn
nth_strictMonoOn
LE.le.trans_lt
nth_le_of_strictMonoOn_of_mapsTo πŸ“–mathematicalSet.MapsTo
setOf
StrictMonoOn
instPreorder
nthβ€”strong_induction_on
nth_eq_sInf
csInf_le
Mathlib.Tactic.Push.not_forall_eq
instIsTransLe
LE.total
nth.eq_1
List.getD_eq_default
Finset.length_sort
nth_lt_nth πŸ“–mathematicalSet.Infinite
setOf
nthβ€”StrictMono.lt_iff_lt
nth_strictMono
nth_lt_nth' πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
nthβ€”Set.finite_or_infinite
nth_lt_nth_of_lt_card
nth_lt_nth
nth_lt_nth_of_lt_card πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
nthβ€”nth_strictMonoOn
LT.lt.trans
nth_lt_of_lt_count πŸ“–mathematicalcountnthβ€”Monotone.reflect_lt
count_monotone
count_nth
LT.lt.trans_le
count_le_card
nth_mem πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
nthβ€”Set.finite_or_infinite
nth_mem_of_lt_card
nth_mem_of_infinite
nth_mem_anti πŸ“–β€”nthβ€”β€”nth_mem
LE.le.trans
nth_mem_of_infinite πŸ“–mathematicalSet.Infinite
setOf
nthβ€”Set.range_subset_iff
Eq.le
range_nth_of_infinite
nth_mem_of_lt_card πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
nthβ€”Eq.subset
Set.instReflSubset
image_nth_Iio_card
Set.mem_image_of_mem
nth_mem_of_ne_zero πŸ“–mathematicalβ€”nthβ€”nth_mem
lt_card_toFinset_of_nth_ne_zero
nth_monotone πŸ“–mathematicalSet.Infinite
setOf
Monotone
instPreorder
nth
β€”StrictMono.monotone
nth_strictMono
nth_ne_zero_anti πŸ“–β€”β€”β€”β€”nth_eq_zero_mono
nth_of_card_le πŸ“–mathematicalFinset.card
Set.Finite.toFinset
setOf
nthβ€”instIsTransLe
LE.total
nth.eq_1
List.getD_eq_default
Finset.length_sort
nth_of_forall πŸ“–mathematicalβ€”nthβ€”count_of_forall
LT.lt.le
nth_count
le_rfl
nth_of_forall_not πŸ“–mathematicalβ€”nthβ€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Finset.coe_range
Set.mem_setOf
nth_of_card_le
Set.Finite.subset
Finset.finite_toSet
LE.le.trans_eq
Finset.card_le_card
Set.Finite.toFinset_subset
Finset.card_range
nth_strictMono πŸ“–mathematicalSet.Infinite
setOf
StrictMono
instPreorder
nth
β€”Set.Infinite.to_subtype
nth_eq_orderIsoOfNat
StrictMono.comp
Subtype.strictMono_coe
OrderIso.strictMono
nth_strictMonoOn πŸ“–mathematicalβ€”StrictMonoOn
instPreorder
nth
Set.Iio
Finset.card
Set.Finite.toFinset
setOf
β€”nth_eq_orderEmbOfFin
OrderEmbedding.strictMono
nth_true πŸ“–mathematicalβ€”nthβ€”nth_of_forall
nth_zero πŸ“–mathematicalβ€”nth
InfSet.sInf
instInfSet
setOf
β€”nth_eq_sInf
instCanonicallyOrderedAdd
instIsEmptyFalse
nth_zero_of_exists πŸ“–mathematicalβ€”nth
find
β€”nth_zero
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
sInf_def
nth_zero_of_zero πŸ“–mathematicalβ€”nthβ€”nth_zero
range_nth_of_finite πŸ“–mathematicalβ€”Set.range
nth
Set
Set.instInsert
setOf
β€”instIsTransLe
LE.total
nth_eq_getD_sort
Set.range_list_getD
range_nth_of_infinite πŸ“–mathematicalSet.Infinite
setOf
Set.range
nth
β€”Set.Infinite.to_subtype
nth_eq_orderIsoOfNat
Subtype.coe_comp_ofNat_range
range_nth_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.range
nth
Set.instInsert
setOf
β€”Set.finite_or_infinite
Eq.subset
Set.instReflSubset
range_nth_of_finite
Eq.trans_subset
range_nth_of_infinite
Set.subset_insert
subset_range_nth πŸ“–mathematicalβ€”Set
Set.instHasSubset
setOf
Set.range
nth
β€”exists_lt_card_nth_eq
surjective_count_of_infinite_setOf πŸ“–mathematicalSet.Infinite
setOf
countβ€”count_nth_of_infinite

---

← Back to Index