Documentation Verification Report

Pairing

πŸ“ Source: Mathlib/Data/Nat/Pairing.lean

Statistics

MetricCount
Definitionspair, pairEquiv, unpair
3
Theoremsadd_le_pair, left_le_pair, max_sq_add_min_le_pair, pairEquiv_apply, pairEquiv_symm_apply, pair_eq_of_unpair_eq, pair_eq_pair, pair_lt_max_add_one_sq, pair_lt_pair_left, pair_lt_pair_right, pair_unpair, right_le_pair, surjective_unpair, unpair_add_le, unpair_left_le, unpair_lt, unpair_pair, unpair_right_le, unpair_zero, iInter_unpair, iUnion_unpair, iUnion_unpair_prod, iInf_unpair, iSup_unpair
24
Total27

Nat

Definitions

NameCategoryTheorems
pair πŸ“–CompOp
27 mathmath: Partrec.prec', pairEquiv_apply, pair_lt_pair_right, Primrec'.natPair, Encodable.encode_sigma_val, pair_lt_pair_left, Partrec.rfind', Partrec.Code.eval_prec_succ, pair_eq_pair, Primrec.prec1, left_le_pair, right_le_pair, max_sq_add_min_le_pair, ack_pair_lt, pair_lt_max_add_one_sq, Primrecβ‚‚.natPair, pair_unpair, Encodable.encode_prod_val, Partrec.Code.smn, add_le_pair, unpair_pair, Encodable.encode_list_cons, Primrec.swap, Primrec.casesOn', Partrec.Code.eval_prec_zero, pair_eq_of_unpair_eq, Partrec.Code.eval_curry
pairEquiv πŸ“–CompOp
2 mathmath: pairEquiv_apply, pairEquiv_symm_apply
unpair πŸ“–CompOp
25 mathmath: Denumerable.prod_ofNat_val, Encodable.decode_sigma_val, iInf_unpair, Primrec'.unpair₁, Set.iInter_unpair, iSup_unpair, Set.iUnion_unpair_prod, unpair_lt, unpair_zero, Denumerable.list_ofNat_succ, Primrec'.unpairβ‚‚, Primrec.unpair, pairEquiv_symm_apply, Computable.unpair, Denumerable.sigma_ofNat_val, surjective_unpair, Encodable.decode_prod_val, pair_unpair, unpair_right_le, unpair_add_le, unpair_pair, Encodable.decode_list_succ, Denumerable.prod_nat_ofNat, Set.iUnion_unpair, unpair_left_le

Theorems

NameKindAssumesProvesValidatesDepends On
add_le_pair πŸ“–mathematicalβ€”pairβ€”β€”
left_le_pair πŸ“–mathematicalβ€”pairβ€”unpair_pair
unpair_left_le
max_sq_add_min_le_pair πŸ“–mathematicalβ€”pairβ€”pair.eq_1
lt_or_ge
max_eq_right
LT.lt.le
min_eq_left
le_refl
LE.le.not_gt
max_eq_left
min_eq_right
pairEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
pairEquiv
pair
β€”β€”
pairEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
pairEquiv
unpair
β€”β€”
pair_eq_of_unpair_eq πŸ“–mathematicalunpairpairβ€”pair_unpair
pair_eq_pair πŸ“–mathematicalβ€”pairβ€”Equiv.injective
pair_lt_max_add_one_sq πŸ“–mathematicalβ€”pairβ€”sup_of_le_right
sup_of_le_left
not_lt
pair_lt_pair_left πŸ“–mathematicalβ€”pairβ€”not_lt
not_lt_of_gt
lt_of_le_of_lt
pair_lt_pair_right πŸ“–mathematicalβ€”pairβ€”lt_trans
sqrt_lt
sqrt_add_eq
le_trans
not_lt
pair_unpair πŸ“–mathematicalβ€”pair
unpair
β€”sqrt_le
sqrt_le_add
LE.le.not_gt
le_of_not_gt
right_le_pair πŸ“–mathematicalβ€”pairβ€”le_trans
surjective_unpair πŸ“–mathematicalβ€”unpairβ€”Equiv.surjective
unpair_add_le πŸ“–mathematicalβ€”unpairβ€”LE.le.trans_eq
add_le_pair
pair_unpair
unpair_left_le πŸ“–mathematicalβ€”unpairβ€”unpair_zero
le_of_lt
unpair_lt
unpair_lt πŸ“–mathematicalβ€”unpairβ€”lt_of_lt_of_le
sqrt_le_self
sqrt_pos
lt_of_le_of_lt
unpair_pair πŸ“–mathematicalβ€”unpair
pair
β€”sqrt_add_eq
le_trans
le_of_lt
le_of_not_gt
unpair_right_le πŸ“–mathematicalβ€”unpairβ€”pair_unpair
right_le_pair
unpair_zero πŸ“–mathematicalβ€”unpair
Prod.instZero
β€”unpair.eq_1

Set

Theorems

NameKindAssumesProvesValidatesDepends On
iInter_unpair πŸ“–mathematicalβ€”iInter
Nat.unpair
β€”iInf_unpair
iUnion_unpair πŸ“–mathematicalβ€”iUnion
Nat.unpair
β€”iSup_unpair
iUnion_unpair_prod πŸ“–mathematicalβ€”iUnion
SProd.sprod
Set
instSProd
Nat.unpair
β€”iUnion_prod
Function.Surjective.iUnion_comp
Nat.surjective_unpair

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
iInf_unpair πŸ“–mathematicalβ€”iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Nat.unpair
β€”iSup_unpair
iSup_unpair πŸ“–mathematicalβ€”iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Nat.unpair
β€”iSup_prod
Function.Surjective.iSup_comp
Nat.surjective_unpair

---

← Back to Index