Pairing
π Source: Mathlib/Data/Nat/Pairing.lean
Statistics
Nat
Definitions
Theorems
Set
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
iInter_unpair π | mathematical | β | iInterNat.unpair | β | iInf_unpair |
iUnion_unpair π | mathematical | β | iUnionNat.unpair | β | iSup_unpair |
iUnion_unpair_prod π | mathematical | β | iUnionSProd.sprodSetinstSProdNat.unpair | β | iUnion_prodFunction.Surjective.iUnion_compNat.surjective_unpair |
(root)
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
iInf_unpair π | mathematical | β | iInfCompleteSemilatticeInf.toInfSetCompleteLattice.toCompleteSemilatticeInfNat.unpair | β | iSup_unpair |
iSup_unpair π | mathematical | β | iSupCompleteSemilatticeSup.toSupSetCompleteLattice.toCompleteSemilatticeSupNat.unpair | β | iSup_prodFunction.Surjective.iSup_compNat.surjective_unpair |
---