Documentation Verification Report

PartENat

πŸ“ Source: Mathlib/Data/Nat/PartENat.lean

Statistics

MetricCount
DefinitionsPartENat, addCommMonoid, boundedOrder, decidableLe, find, instAdd, instAddCommMonoidWithOne, instBot, instCoeENat, instCompleteLinearOrder, instDecidableDomNatSome, instInhabited, instLE, instLinearOrderedAddCommMonoidWithTop, instMax, instOne, instTop, instZero, lattice, linearOrder, ofENat, orderBot, orderTop, partialOrder, semilatticeSup, some, toWithTop, wellFoundedRelation, withTopAddEquiv, withTopEquiv, withTopOrderIso
31
Theoremsadd_eq_top_iff, add_left_cancel_iff, add_lt_add_iff_left, add_lt_add_iff_right, add_lt_add_right, add_one_le_iff_lt, add_one_le_of_lt, add_right_cancel_iff, add_top, casesOn, casesOn', coe_add_get, coe_le_coe, coe_le_iff, coe_lt_coe, coe_lt_iff, coe_succ_le_iff, dom_natCast, dom_ofNat, dom_of_le_natCast, dom_of_le_of_dom, dom_of_le_some, dom_of_lt, dom_one, dom_some, dom_zero, eq_natCast_sub_of_add_eq_natCast, eq_top_iff_forall_le, eq_top_iff_forall_lt, eq_zero_iff, find_dom, find_eq_top_iff, find_get, find_le, get_add, get_eq_iff_eq_coe, get_eq_iff_eq_some, get_le_get, get_natCast, get_natCast', get_ofNat', get_one, get_zero, instCanLiftNatCastDom, instCanonicallyOrderedAdd, instCharZero, instWellFoundedLT, instZeroLEOneClass, isOrderedAddMonoid, isTotal, le_coe_iff, le_def, le_of_lt_add_one, lt_add_iff_pos_right, lt_add_one, lt_add_one_iff_lt, lt_coe_iff, lt_coe_succ_iff_le, lt_def, lt_find, lt_find_iff, lt_wf, natCast_get, natCast_inj, natCast_lt_top, natCast_ne_top, ne_top_iff, ne_top_iff_dom, ne_top_of_lt, ne_zero_iff, not_dom_iff_eq_top, not_isMax_natCast, ofENat_coe, ofENat_le, ofENat_lt, ofENat_ofNat, ofENat_one, ofENat_toWithTop, ofENat_top, ofENat_zero, ofNat_lt_top, ofNat_ne_top, one_lt_top, one_ne_top, pos_iff_one_le, some_eq_natCast, toWithTop_add, toWithTop_le, toWithTop_lt, toWithTop_natCast, toWithTop_natCast', toWithTop_ofENat, toWithTop_ofNat, toWithTop_one, toWithTop_one', toWithTop_some, toWithTop_top, toWithTop_top', toWithTop_zero, toWithTop_zero', top_add, top_eq_none, withTopEquiv_apply, withTopEquiv_le, withTopEquiv_lt, withTopEquiv_natCast, withTopEquiv_ofNat, withTopEquiv_one, withTopEquiv_symm_apply, withTopEquiv_symm_coe, withTopEquiv_symm_le, withTopEquiv_symm_lt, withTopEquiv_symm_ofNat, withTopEquiv_symm_one, withTopEquiv_symm_top, withTopEquiv_symm_zero, withTopEquiv_top, withTopEquiv_zero, zero_lt_top, zero_ne_top
120
Total151

PartENat

Definitions

NameCategoryTheorems
addCommMonoid πŸ“–CompOp
1 mathmath: isOrderedAddMonoid
boundedOrder πŸ“–CompOpβ€”
decidableLe πŸ“–CompOpβ€”
find πŸ“–CompOp
5 mathmath: lt_find_iff, find_eq_top_iff, find_le, lt_find, find_dom
instAdd πŸ“–CompOp
15 mathmath: top_add, instCanonicallyOrderedAdd, add_one_le_iff_lt, lt_add_one_iff_lt, add_top, toWithTop_add, add_one_le_of_lt, add_right_cancel_iff, add_lt_add_iff_right, add_eq_top_iff, lt_add_iff_pos_right, add_lt_add_iff_left, add_lt_add_right, lt_add_one, add_left_cancel_iff
instAddCommMonoidWithOne πŸ“–CompOp
31 mathmath: toWithTop_natCast, lt_find_iff, coe_lt_coe, lt_coe_iff, get_natCast, le_coe_iff, not_isMax_natCast, withTopEquiv_symm_ofNat, ofENat_ofNat, instCanLiftNatCastDom, natCast_get, dom_natCast, find_le, toWithTop_natCast', eq_top_iff_forall_le, natCast_lt_top, withTopEquiv_natCast, coe_le_coe, eq_top_iff_forall_lt, coe_succ_le_iff, coe_lt_iff, get_eq_iff_eq_coe, ofENat_coe, ne_top_iff, some_eq_natCast, coe_le_iff, withTopEquiv_symm_coe, lt_find, natCast_inj, lt_coe_succ_iff_le, instCharZero
instBot πŸ“–CompOp
1 mathmath: ne_zero_iff
instCoeENat πŸ“–CompOpβ€”
instCompleteLinearOrder πŸ“–CompOpβ€”
instDecidableDomNatSome πŸ“–CompOp
1 mathmath: toWithTop_some
instInhabited πŸ“–CompOpβ€”
instLE πŸ“–CompOp
23 mathmath: ofENat_le, instCanonicallyOrderedAdd, eq_zero_iff, pos_iff_one_le, add_one_le_iff_lt, le_coe_iff, lt_add_one_iff_lt, not_isMax_natCast, get_le_get, toWithTop_le, add_one_le_of_lt, le_of_lt_add_one, find_le, eq_top_iff_forall_le, le_def, coe_le_coe, instZeroLEOneClass, coe_succ_le_iff, withTopEquiv_le, isTotal, withTopEquiv_symm_le, coe_le_iff, lt_coe_succ_iff_le
instLinearOrderedAddCommMonoidWithTop πŸ“–CompOpβ€”
instMax πŸ“–CompOpβ€”
instOne πŸ“–CompOp
13 mathmath: dom_one, ofENat_one, withTopEquiv_one, pos_iff_one_le, add_one_le_iff_lt, lt_add_one_iff_lt, one_lt_top, add_one_le_of_lt, toWithTop_one, withTopEquiv_symm_one, instZeroLEOneClass, toWithTop_one', lt_add_one
instTop πŸ“–CompOp
17 mathmath: top_add, ofNat_lt_top, top_eq_none, not_dom_iff_eq_top, add_top, one_lt_top, find_eq_top_iff, eq_top_iff_forall_le, natCast_lt_top, eq_top_iff_forall_lt, toWithTop_top, withTopEquiv_top, toWithTop_top', add_eq_top_iff, zero_lt_top, ofENat_top, withTopEquiv_symm_top
instZero πŸ“–CompOp
11 mathmath: eq_zero_iff, pos_iff_one_le, toWithTop_zero', instZeroLEOneClass, toWithTop_zero, dom_zero, lt_add_iff_pos_right, withTopEquiv_symm_zero, zero_lt_top, withTopEquiv_zero, ofENat_zero
lattice πŸ“–CompOpβ€”
linearOrder πŸ“–CompOpβ€”
ofENat πŸ“–CompOp
10 mathmath: ofENat_le, withTopEquiv_symm_apply, ofENat_one, ofENat_ofNat, ofENat_lt, ofENat_coe, ofENat_zero, toWithTop_ofENat, ofENat_top, ofENat_toWithTop
orderBot πŸ“–CompOpβ€”
orderTop πŸ“–CompOpβ€”
partialOrder πŸ“–CompOp
29 mathmath: eq_natCast_sub_of_add_eq_natCast, lt_find_iff, coe_lt_coe, lt_coe_iff, pos_iff_one_le, add_one_le_iff_lt, ofNat_lt_top, instWellFoundedLT, toWithTop_lt, lt_add_one_iff_lt, lt_def, one_lt_top, isOrderedAddMonoid, ne_zero_iff, natCast_lt_top, eq_top_iff_forall_lt, coe_succ_le_iff, coe_lt_iff, add_lt_add_iff_right, ofENat_lt, withTopEquiv_lt, lt_add_iff_pos_right, lt_wf, add_lt_add_iff_left, zero_lt_top, lt_add_one, lt_find, lt_coe_succ_iff_le, withTopEquiv_symm_lt
semilatticeSup πŸ“–CompOpβ€”
some πŸ“–CompOp
4 mathmath: get_eq_iff_eq_some, dom_some, toWithTop_some, some_eq_natCast
toWithTop πŸ“–CompOp
16 mathmath: toWithTop_natCast, toWithTop_lt, toWithTop_zero', toWithTop_add, toWithTop_le, toWithTop_one, toWithTop_natCast', toWithTop_top, toWithTop_top', toWithTop_zero, withTopEquiv_apply, toWithTop_some, toWithTop_one', toWithTop_ofNat, toWithTop_ofENat, ofENat_toWithTop
wellFoundedRelation πŸ“–CompOpβ€”
withTopAddEquiv πŸ“–CompOpβ€”
withTopEquiv πŸ“–CompOp
16 mathmath: withTopEquiv_symm_apply, withTopEquiv_one, withTopEquiv_ofNat, withTopEquiv_symm_ofNat, withTopEquiv_symm_one, withTopEquiv_natCast, withTopEquiv_top, withTopEquiv_le, withTopEquiv_lt, withTopEquiv_apply, withTopEquiv_symm_zero, withTopEquiv_zero, withTopEquiv_symm_le, withTopEquiv_symm_coe, withTopEquiv_symm_lt, withTopEquiv_symm_top
withTopOrderIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_top_iff πŸ“–mathematicalβ€”PartENat
instAdd
Top.top
instTop
β€”add_top
top_add
add_left_cancel_iff πŸ“–mathematicalβ€”PartENat
instAdd
β€”add_comm
add_right_cancel_iff
add_lt_add_iff_left πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instAdd
β€”add_comm
add_lt_add_iff_right
add_lt_add_iff_right πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instAdd
β€”lt_of_add_lt_add_right
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
isOrderedAddMonoid
add_lt_add_right
add_lt_add_right πŸ“–mathematicalPartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instAddβ€”ne_top_iff
ne_top_of_lt
top_add
natCast_lt_top
IsOrderedAddMonoid.toAddLeftMono
isOrderedAddMonoid
instZeroLEOneClass
instCharZero
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
add_one_le_iff_lt πŸ“–mathematicalβ€”PartENat
instLE
instAdd
instOne
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”ne_top_iff
natCast_lt_top
IsOrderedAddMonoid.toAddLeftMono
isOrderedAddMonoid
instZeroLEOneClass
instCharZero
Nat.cast_one
add_one_le_of_lt
add_one_le_of_lt πŸ“–mathematicalPartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instLE
instAdd
instOne
β€”le_top
ne_top_iff
ne_top_of_lt
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
isOrderedAddMonoid
instZeroLEOneClass
instCharZero
add_right_cancel_iff πŸ“–mathematicalβ€”PartENat
instAdd
β€”ne_top_iff
top_add
instCharZero
add_comm
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_top πŸ“–mathematicalβ€”PartENat
instAdd
Top.top
instTop
β€”add_comm
top_add
casesOn πŸ“–β€”Top.top
PartENat
instTop
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”β€”casesOn'
casesOn' πŸ“–β€”Top.top
PartENat
instTop
some
β€”β€”Part.induction_on
coe_add_get πŸ“–mathematicalPart.Dom
PartENat
instAdd
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.getβ€”β€”
coe_le_coe πŸ“–mathematicalβ€”PartENat
instLE
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
isOrderedAddMonoid
instZeroLEOneClass
instCharZero
coe_le_iff πŸ“–mathematicalβ€”PartENat
instLE
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.get
β€”some_eq_natCast
coe_lt_coe πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
isOrderedAddMonoid
instZeroLEOneClass
instCharZero
coe_lt_iff πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.get
β€”some_eq_natCast
coe_succ_le_iff πŸ“–mathematicalβ€”PartENat
instLE
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”Nat.cast_add
Nat.cast_one
add_one_le_iff_lt
natCast_ne_top
dom_natCast πŸ“–mathematicalβ€”Part.Dom
PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”β€”
dom_ofNat πŸ“–mathematicalβ€”Part.Domβ€”β€”
dom_of_le_natCast πŸ“–mathematicalPartENat
instLE
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.Domβ€”dom_of_le_some
dom_of_le_of_dom πŸ“–β€”PartENat
instLE
Part.Dom
β€”β€”β€”
dom_of_le_some πŸ“–mathematicalPartENat
instLE
some
Part.Domβ€”dom_of_le_of_dom
dom_of_lt πŸ“–mathematicalPartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Part.Domβ€”not_top_lt
dom_natCast
dom_one πŸ“–mathematicalβ€”Part.Dom
PartENat
instOne
β€”β€”
dom_some πŸ“–mathematicalβ€”Part.Dom
some
β€”β€”
dom_zero πŸ“–mathematicalβ€”Part.Dom
PartENat
instZero
β€”β€”
eq_natCast_sub_of_add_eq_natCast πŸ“–mathematicalPartENat
instAdd
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.get
dom_of_le_natCast
LE.le.trans_eq
Preorder.toLE
PartialOrder.toPreorder
partialOrder
le_add_left
instCanonicallyOrderedAdd
le_rfl
β€”dom_of_le_natCast
LE.le.trans_eq
le_add_left
instCanonicallyOrderedAdd
le_rfl
CanLift.prf
instCanLiftNatCastDom
le_add_right
dom_natCast
get_natCast
eq_tsub_of_add_eq
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.cast_add
eq_top_iff_forall_le πŸ“–mathematicalβ€”Top.top
PartENat
instTop
instLE
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”eq_top_iff_forall_lt
LT.lt.le
lt_of_lt_of_le
coe_lt_coe
eq_top_iff_forall_lt πŸ“–mathematicalβ€”Top.top
PartENat
instTop
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”natCast_lt_top
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
ne_top_iff
irrefl
instIrreflLt
eq_zero_iff πŸ“–mathematicalβ€”PartENat
instZero
instLE
β€”eq_bot_iff
find_dom πŸ“–mathematicalβ€”Part.Dom
find
β€”β€”
find_eq_top_iff πŸ“–mathematicalβ€”find
Top.top
PartENat
instTop
β€”eq_top_iff_forall_lt
lt_find_iff
le_rfl
lt_find
find_get πŸ“–mathematicalPart.Dom
find
Part.get
Nat.find
β€”β€”
find_le πŸ“–mathematicalβ€”PartENat
instLE
find
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”le_coe_iff
Nat.find_min'
get_add πŸ“–mathematicalPart.Dom
PartENat
instAdd
Part.getβ€”β€”
get_eq_iff_eq_coe πŸ“–mathematicalPart.DomPart.get
PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”get_eq_iff_eq_some
get_eq_iff_eq_some πŸ“–mathematicalPart.DomPart.get
some
β€”Part.get_eq_iff_eq_some
get_le_get πŸ“–mathematicalPart.DomPart.get
PartENat
instLE
β€”coe_le_coe
natCast_get
get_natCast πŸ“–mathematicalβ€”Part.get
PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
dom_natCast
β€”get_natCast'
dom_natCast
get_natCast' πŸ“–mathematicalPart.Dom
PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.getβ€”natCast_get
get_ofNat' πŸ“–mathematicalPart.DomPart.getβ€”get_natCast'
get_one πŸ“–mathematicalPart.Dom
PartENat
instOne
Part.getβ€”β€”
get_zero πŸ“–mathematicalPart.Dom
PartENat
instZero
Part.getβ€”β€”
instCanLiftNatCastDom πŸ“–mathematicalβ€”CanLift
PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.Dom
β€”Part.some_get
instCanonicallyOrderedAdd πŸ“–mathematicalβ€”CanonicallyOrderedAdd
PartENat
instAdd
instLE
β€”add_top
LT.lt.not_ge
natCast_lt_top
Nat.cast_add
add_comm
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
coe_le_coe
LE.le.trans_eq
le_top
top_add
Eq.ge
le_add_self
le_self_add
instCharZero πŸ“–mathematicalβ€”CharZero
PartENat
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”Part.some_injective
instWellFoundedLT πŸ“–mathematicalβ€”WellFoundedLT
PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”lt_wf
instZeroLEOneClass πŸ“–mathematicalβ€”ZeroLEOneClass
PartENat
instZero
instOne
instLE
β€”bot_le
isOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoid
PartENat
addCommMonoid
partialOrder
β€”add_top
dom_natCast
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
isTotal πŸ“–mathematicalβ€”IsTotal
PartENat
instLE
β€”le_top
le_total
coe_le_coe
le_coe_iff πŸ“–mathematicalβ€”PartENat
instLE
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.get
β€”get_natCast'
le_def πŸ“–mathematicalβ€”PartENat
instLE
Part.get
β€”β€”
le_of_lt_add_one πŸ“–mathematicalPartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instAdd
instOne
instLEβ€”le_top
ne_top_iff
ne_top_of_lt
IsOrderedAddMonoid.toAddLeftMono
isOrderedAddMonoid
instZeroLEOneClass
instCharZero
Nat.cast_one
lt_add_iff_pos_right πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instAdd
instZero
β€”add_lt_add_iff_left
add_zero
lt_add_one πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instAdd
instOne
β€”lt_add_iff_pos_right
Nat.cast_zero
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
isOrderedAddMonoid
instZeroLEOneClass
instCharZero
lt_add_one_iff_lt πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instAdd
instOne
instLE
β€”le_of_lt_add_one
ne_top_iff
top_add
natCast_lt_top
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
isOrderedAddMonoid
instZeroLEOneClass
instCharZero
lt_coe_iff πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.get
β€”get_natCast'
lt_coe_succ_iff_le πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
instLE
β€”Nat.cast_add
Nat.cast_one
lt_add_one_iff_lt
lt_def πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Part.get
β€”lt_iff_le_not_ge
le_def
LT.lt.le
not_lt_of_ge
lt_find πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
find
β€”coe_lt_iff
find_get
Nat.find_spec
Mathlib.Tactic.Contrapose.contrapose₁
lt_find_iff πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
find
β€”Nat.find_min
lt_of_le_of_lt
coe_lt_iff
lt_find
lt_wf πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”wellFounded_lt
natCast_get πŸ“–mathematicalPart.DomPartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Part.get
β€”Part.ext'
natCast_inj πŸ“–mathematicalβ€”PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”instCharZero
natCast_lt_top πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
Top.top
instTop
β€”Ne.lt_top
natCast_ne_top πŸ“–β€”β€”β€”β€”ne_of_lt
natCast_lt_top
ne_top_iff πŸ“–mathematicalβ€”PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”Part.ne_none_iff
ne_top_iff_dom πŸ“–mathematicalβ€”Part.Domβ€”not_iff_comm
Part.eq_none_iff'
ne_top_of_lt πŸ“–β€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
β€”β€”ne_of_lt
lt_of_lt_of_le
le_top
ne_zero_iff πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Bot.bot
instBot
β€”bot_lt_iff_ne_bot
not_dom_iff_eq_top πŸ“–mathematicalβ€”Part.Dom
Top.top
PartENat
instTop
β€”Iff.not_left
ne_top_iff_dom
not_isMax_natCast πŸ“–mathematicalβ€”IsMax
PartENat
instLE
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”not_isMax_of_lt
natCast_lt_top
ofENat_coe πŸ“–mathematicalβ€”ofENat
ENat
ENat.instNatCast
PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”β€”
ofENat_le πŸ“–mathematicalβ€”PartENat
instLE
ofENat
ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”toWithTop_le
toWithTop_ofENat
ofENat_lt πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
ofENat
ENat
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”toWithTop_lt
toWithTop_ofENat
ofENat_ofNat πŸ“–mathematicalβ€”ofENat
PartENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”β€”
ofENat_one πŸ“–mathematicalβ€”ofENat
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
PartENat
instOne
β€”β€”
ofENat_toWithTop πŸ“–mathematicalβ€”ofENat
toWithTop
β€”toWithTop_top'
toWithTop_natCast'
ofENat_top πŸ“–mathematicalβ€”ofENat
Top.top
ENat
instTopENat
PartENat
instTop
β€”β€”
ofENat_zero πŸ“–mathematicalβ€”ofENat
ENat
instZeroENat
PartENat
instZero
β€”β€”
ofNat_lt_top πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Top.top
instTop
β€”natCast_lt_top
ofNat_ne_top πŸ“–β€”β€”β€”β€”natCast_ne_top
one_lt_top πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instOne
Top.top
instTop
β€”natCast_lt_top
one_ne_top πŸ“–β€”β€”β€”β€”natCast_ne_top
pos_iff_one_le πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
instLE
instOne
β€”Nat.cast_zero
Nat.cast_one
coe_lt_coe
coe_le_coe
some_eq_natCast πŸ“–mathematicalβ€”some
PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”β€”
toWithTop_add πŸ“–mathematicalβ€”toWithTop
PartENat
instAdd
Part.Dom
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”toWithTop.congr_simp
add_top
toWithTop_top'
add_top
toWithTop_natCast'
top_add
top_add
toWithTop_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
toWithTop
PartENat
instLE
β€”toWithTop_top'
toWithTop_natCast'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
isOrderedAddMonoid
instZeroLEOneClass
instCharZero
toWithTop_lt πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
toWithTop
PartENat
partialOrder
β€”lt_iff_lt_of_le_iff_le
toWithTop_le
toWithTop_natCast πŸ“–mathematicalβ€”toWithTop
PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
ENat
ENat.instNatCast
β€”β€”
toWithTop_natCast' πŸ“–mathematicalβ€”toWithTop
PartENat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
ENat
ENat.instNatCast
β€”toWithTop_natCast
toWithTop_ofENat πŸ“–mathematicalβ€”toWithTop
ofENat
β€”toWithTop_top'
toWithTop_natCast'
toWithTop_ofNat πŸ“–mathematicalβ€”toWithTop
ENat
instOfNatAtLeastTwo
ENat.instNatCast
β€”toWithTop_natCast'
toWithTop_one πŸ“–mathematicalβ€”toWithTop
PartENat
instOne
Part.someDecidable
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
toWithTop_one' πŸ“–mathematicalβ€”toWithTop
PartENat
instOne
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonDecidable
toWithTop_one
toWithTop_some πŸ“–mathematicalβ€”toWithTop
some
instDecidableDomNatSome
ENat
ENat.instNatCast
β€”β€”
toWithTop_top πŸ“–mathematicalβ€”toWithTop
Top.top
PartENat
instTop
Part.noneDecidable
ENat
instTopENat
β€”β€”
toWithTop_top' πŸ“–mathematicalβ€”toWithTop
Top.top
PartENat
instTop
ENat
instTopENat
β€”Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonDecidable
toWithTop_top
toWithTop_zero πŸ“–mathematicalβ€”toWithTop
PartENat
instZero
Part.someDecidable
ENat
instZeroENat
β€”β€”
toWithTop_zero' πŸ“–mathematicalβ€”toWithTop
PartENat
instZero
ENat
instZeroENat
β€”Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonDecidable
toWithTop_zero
top_add πŸ“–mathematicalβ€”PartENat
instAdd
Top.top
instTop
β€”Part.ext'
top_eq_none πŸ“–mathematicalβ€”Top.top
PartENat
instTop
Part.none
β€”β€”
withTopEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
PartENat
ENat
EquivLike.toFunLike
Equiv.instEquivLike
withTopEquiv
toWithTop
Part.Dom
β€”β€”
withTopEquiv_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
DFunLike.coe
Equiv
PartENat
EquivLike.toFunLike
Equiv.instEquivLike
withTopEquiv
instLE
β€”β€”
withTopEquiv_lt πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
DFunLike.coe
Equiv
PartENat
EquivLike.toFunLike
Equiv.instEquivLike
withTopEquiv
partialOrder
β€”β€”
withTopEquiv_natCast πŸ“–mathematicalβ€”DFunLike.coe
Equiv
PartENat
ENat
EquivLike.toFunLike
Equiv.instEquivLike
withTopEquiv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
ENat.instNatCast
β€”toWithTop_natCast'
withTopEquiv_ofNat πŸ“–mathematicalβ€”DFunLike.coe
Equiv
PartENat
ENat
EquivLike.toFunLike
Equiv.instEquivLike
withTopEquiv
instOfNatAtLeastTwo
ENat.instNatCast
β€”toWithTop_ofNat
withTopEquiv_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
PartENat
ENat
EquivLike.toFunLike
Equiv.instEquivLike
withTopEquiv
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”toWithTop_one'
withTopEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ENat
PartENat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
withTopEquiv
ofENat
β€”β€”
withTopEquiv_symm_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ENat
PartENat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
withTopEquiv
ENat.instNatCast
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”β€”
withTopEquiv_symm_le πŸ“–mathematicalβ€”PartENat
instLE
DFunLike.coe
Equiv
ENat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
withTopEquiv
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”β€”
withTopEquiv_symm_lt πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
DFunLike.coe
Equiv
ENat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
withTopEquiv
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”β€”
withTopEquiv_symm_ofNat πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ENat
PartENat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
withTopEquiv
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOne
β€”β€”
withTopEquiv_symm_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ENat
PartENat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
withTopEquiv
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
instOne
β€”β€”
withTopEquiv_symm_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ENat
PartENat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
withTopEquiv
Top.top
instTopENat
instTop
β€”β€”
withTopEquiv_symm_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ENat
PartENat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
withTopEquiv
instZeroENat
instZero
β€”β€”
withTopEquiv_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
PartENat
ENat
EquivLike.toFunLike
Equiv.instEquivLike
withTopEquiv
Top.top
instTop
instTopENat
β€”toWithTop_top'
withTopEquiv_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
PartENat
ENat
EquivLike.toFunLike
Equiv.instEquivLike
withTopEquiv
instZero
instZeroENat
β€”toWithTop_zero'
zero_lt_top πŸ“–mathematicalβ€”PartENat
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
Top.top
instTop
β€”natCast_lt_top
zero_ne_top πŸ“–β€”β€”β€”β€”natCast_ne_top

(root)

Definitions

NameCategoryTheorems
PartENat πŸ“–CompOp
89 mathmath: PartENat.top_add, PartENat.dom_one, PartENat.ofENat_le, PartENat.withTopEquiv_symm_apply, PartENat.ofENat_one, PartENat.instCanonicallyOrderedAdd, PartENat.eq_zero_iff, PartENat.toWithTop_natCast, PartENat.withTopEquiv_one, PartENat.lt_find_iff, PartENat.coe_lt_coe, PartENat.lt_coe_iff, PartENat.pos_iff_one_le, PartENat.add_one_le_iff_lt, PartENat.ofNat_lt_top, PartENat.get_natCast, PartENat.top_eq_none, PartENat.le_coe_iff, PartENat.instWellFoundedLT, PartENat.toWithTop_lt, PartENat.lt_add_one_iff_lt, PartENat.not_isMax_natCast, PartENat.get_le_get, PartENat.toWithTop_zero', PartENat.withTopEquiv_ofNat, PartENat.lt_def, PartENat.not_dom_iff_eq_top, PartENat.add_top, PartENat.toWithTop_add, PartENat.toWithTop_le, PartENat.one_lt_top, PartENat.withTopEquiv_symm_ofNat, PartENat.ofENat_ofNat, PartENat.instCanLiftNatCastDom, PartENat.toWithTop_one, PartENat.natCast_get, PartENat.dom_natCast, PartENat.isOrderedAddMonoid, PartENat.find_eq_top_iff, PartENat.add_right_cancel_iff, PartENat.find_le, PartENat.ne_zero_iff, PartENat.toWithTop_natCast', PartENat.eq_top_iff_forall_le, PartENat.natCast_lt_top, PartENat.withTopEquiv_symm_one, PartENat.le_def, PartENat.withTopEquiv_natCast, PartENat.coe_le_coe, PartENat.instZeroLEOneClass, PartENat.eq_top_iff_forall_lt, PartENat.coe_succ_le_iff, PartENat.coe_lt_iff, PartENat.get_eq_iff_eq_coe, PartENat.toWithTop_top, PartENat.withTopEquiv_top, PartENat.toWithTop_top', PartENat.add_lt_add_iff_right, PartENat.toWithTop_zero, PartENat.ofENat_lt, PartENat.withTopEquiv_le, PartENat.add_eq_top_iff, PartENat.dom_zero, PartENat.withTopEquiv_lt, PartENat.withTopEquiv_apply, PartENat.ofENat_coe, PartENat.isTotal, PartENat.lt_add_iff_pos_right, PartENat.withTopEquiv_symm_zero, PartENat.toWithTop_one', PartENat.lt_wf, PartENat.add_lt_add_iff_left, PartENat.zero_lt_top, PartENat.ne_top_iff, PartENat.withTopEquiv_zero, PartENat.lt_add_one, PartENat.withTopEquiv_symm_le, PartENat.some_eq_natCast, PartENat.coe_le_iff, PartENat.ofENat_zero, PartENat.withTopEquiv_symm_coe, PartENat.lt_find, PartENat.ofENat_top, PartENat.natCast_inj, PartENat.lt_coe_succ_iff_le, PartENat.instCharZero, PartENat.withTopEquiv_symm_lt, PartENat.withTopEquiv_symm_top, PartENat.add_left_cancel_iff

---

← Back to Index