Documentation Verification Report

Basic

📁 Source: Mathlib/Data/Nat/Prime/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsodd_of_left, odd_of_right, coprime_pow_of_not_dvd, dvd_iff_eq, dvd_iff_not_coprime, dvd_mul_of_dvd_ne, dvd_of_dvd_pow, eq_one_of_pow, eq_two_or_odd, eq_two_or_odd', even_iff, even_sub_one, five_le_of_ne_two_of_ne_three, mod_two_eq_one_iff_ne_two, mul_eq_prime_sq_iff, not_coprime_iff_dvd, not_dvd_mul, not_prime_pow, not_prime_pow', odd_of_ne_two, pow_eq_iff, pred_pos, coprime_of_dvd', coprime_of_lt_minFac, coprime_of_lt_prime, coprime_or_dvd_of_prime, coprime_pow_primes, coprime_primes, coprime_two_left, coprime_two_right, dvd_of_forall_prime_mul_dvd, dvd_prime_pow, eq_one_iff_not_exists_prime_dvd, eq_or_coprime_of_le_prime, eq_prime_pow_of_dvd_least_prime_pow, exists_dvd_of_not_prime, exists_dvd_of_not_prime2, gcd_eq_one_of_lt_minFac, ne_one_iff_exists_prime_dvd, not_prime_iff_exists_dvd_lt, not_prime_iff_exists_dvd_ne, not_prime_iff_exists_mul_eq, not_prime_mul, not_prime_of_dvd_of_lt, not_prime_of_dvd_of_ne, not_prime_of_mul_eq, prime_eq_prime_of_dvd_pow, prime_mul_iff, succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul, succ_pred_prime, coprime_two_left, coprime_two_right
52
Total52

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
coprime_of_dvd' 📖coprime_of_dvd
not_le_of_gt
Prime.one_lt
coprime_of_lt_minFac 📖minFacPrime.not_coprime_iff_dvd
Mathlib.Tactic.Push.not_and_eq
LT.lt.false
LE.le.trans_lt
LT.lt.trans_le
minFac_le_of_dvd
Prime.two_le
coprime_of_lt_prime 📖Primecoprime_or_dvd_of_prime
coprime_or_dvd_of_prime 📖PrimePrime.dvd_iff_not_coprime
em
coprime_pow_primes 📖mathematicalPrimeMonoid.toNatPow
instMonoid
coprime_primes
coprime_primes 📖PrimePrime.coprime_iff_not_dvd
dvd_prime_two_le
Prime.two_le
coprime_two_left 📖mathematicalOdd
instSemiring
Prime.coprime_iff_not_dvd
prime_two
not_even_iff_odd
instAtLeastTwoHAddOfNat
even_iff_two_dvd
coprime_two_right 📖mathematicalOdd
instSemiring
coprime_two_left
dvd_of_forall_prime_mul_dvd 📖eq_or_ne
one_dvd
exists_prime_and_dvd
trans
instIsTransDvd
dvd_mul_left
dvd_prime_pow 📖mathematicalPrimeMonoid.toNatPow
instMonoid
dvd_prime_pow
instIsCancelMulZero
prime_iff
associated_eq_eq
Unique.instSubsingleton
eq_one_iff_not_exists_prime_dvd 📖not_iff_not
ne_one_iff_exists_prime_dvd
eq_or_coprime_of_le_prime 📖Primecoprime_of_lt_prime
LE.le.eq_or_lt
eq_prime_pow_of_dvd_least_prime_pow 📖Prime
Monoid.toNatPow
instMonoid
dvd_prime_pow
le_antisymm
not_le
Prime.one_lt
exists_dvd_of_not_prime 📖PrimeminFac_dvd
Prime.one_lt
minFac_prime
not_prime_iff_minFac_lt
exists_dvd_of_not_prime2 📖PrimeminFac_dvd
Prime.two_le
minFac_prime
not_prime_iff_minFac_lt
gcd_eq_one_of_lt_minFac 📖minFaccoprime_of_lt_minFac
ne_one_iff_exists_prime_dvd 📖mathematicalPrimeprime_two
minFac_prime
minFac_dvd
not_prime_iff_exists_dvd_lt 📖mathematicalPrimeexists_dvd_of_not_prime2
not_prime_of_dvd_of_lt
not_prime_iff_exists_dvd_ne 📖mathematicalPrimeexists_dvd_of_not_prime
not_prime_of_dvd_of_ne
not_prime_iff_exists_mul_eq 📖mathematicalPrimeprime_iff_not_exists_mul_eq
not_prime_mul 📖mathematicalPrime
not_prime_of_dvd_of_lt 📖mathematicalPrimenot_prime_of_dvd_of_ne
not_prime_of_dvd_of_ne 📖mathematicalPrimePrime.eq_one_or_self_of_dvd
not_prime_of_mul_eq 📖mathematicalPrimenot_prime_mul
prime_eq_prime_of_dvd_pow 📖Prime
Monoid.toNatPow
instMonoid
prime_dvd_prime_iff_eq
Prime.dvd_of_dvd_pow
prime_mul_iff 📖mathematicalPrime
succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul 📖Prime
Monoid.toNatPow
instMonoid
pow_add
Prime.dvd_mul
pow_succ
succ_pred_prime 📖PrimePrime.pos

Nat.Coprime

Theorems

NameKindAssumesProvesValidatesDepends On
odd_of_left 📖mathematicalOdd
Nat.instSemiring
Nat.coprime_two_left
odd_of_right 📖mathematicalOdd
Nat.instSemiring
Nat.coprime_two_right

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
coprime_pow_of_not_dvd 📖mathematicalNat.PrimeMonoid.toNatPow
Nat.instMonoid
coprime_iff_not_dvd
dvd_iff_eq 📖Nat.PrimeNat.prime_mul_iff
mul_one
dvd_refl
dvd_iff_not_coprime 📖Nat.Primeiff_not_comm
coprime_iff_not_dvd
dvd_mul_of_dvd_ne 📖Nat.PrimeNat.coprime_primes
dvd_of_dvd_pow 📖Nat.Prime
Monoid.toNatPow
Nat.instMonoid
Prime.dvd_of_dvd_pow
prime
eq_one_of_pow 📖Nat.Prime
Monoid.toNatPow
Nat.instMonoid
not_imp_not
not_prime_pow'
eq_two_or_odd 📖Nat.Primeeq_one_or_self_of_dvd
eq_two_or_odd' 📖mathematicalNat.PrimeOdd
Nat.instSemiring
eq_two_or_odd
even_iff 📖mathematicalNat.PrimeEvenNat.instAtLeastTwoHAddOfNat
even_iff_two_dvd
Nat.prime_dvd_prime_iff_eq
Nat.prime_two
even_sub_one 📖mathematicalNat.PrimeEvenodd_of_ne_two
Nat.instAtLeastTwoHAddOfNat
two_mul
five_le_of_ne_two_of_ne_three 📖Nat.Prime
mod_two_eq_one_iff_ne_two 📖Nat.Primeeq_two_or_odd
mul_eq_prime_sq_iff 📖mathematicalNat.PrimeMonoid.toNatPow
Nat.instMonoid
sq
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
ne_zero
mul_assoc
Nat.dvd_prime
mul_one
dvd_mul
mul_comm
not_coprime_iff_dvd 📖mathematicalNat.PrimeNat.minFac_prime
Dvd.dvd.trans
Nat.minFac_dvd
one_lt
not_dvd_mul 📖Nat.Primedvd_mul
not_prime_pow 📖mathematicalNat.Prime
Monoid.toNatPow
Nat.instMonoid
not_prime_pow'
Nat.two_le_iff
not_prime_pow' 📖mathematicalNat.Prime
Monoid.toNatPow
Nat.instMonoid
not_irreducible_pow
odd_of_ne_two 📖mathematicalNat.PrimeOdd
Nat.instSemiring
eq_two_or_odd'
pow_eq_iff 📖mathematicalNat.PrimeMonoid.toNatPow
Nat.instMonoid
eq_one_of_pow
pow_one
pred_pos 📖Nat.Primeone_lt

Odd

Theorems

NameKindAssumesProvesValidatesDepends On
coprime_two_left 📖Odd
Nat.instSemiring
Nat.coprime_two_left
coprime_two_right 📖Odd
Nat.instSemiring
Nat.coprime_two_right

---

← Back to Index