Documentation Verification Report

Totient

πŸ“ Source: Mathlib/Data/Nat/Totient.lean

Statistics

MetricCount
DefinitionsevalNatTotient, termφ, totient
3
Theoremseq_of_totient_eq_totient, Ico_filter_coprime_le, card_units_zmod_lt_sub_one, dvd_two_of_totient_le_one, eq_or_eq_of_totient_eq_totient, filter_coprime_Ico_eq_totient, neZero_totient, odd_totient_iff, odd_totient_iff_eq_one, prime_iff_card_units, prime_pow_pow_totient_ediv_prod, prod_primeFactors_pow_totient_ediv_dvd, sum_totient, sum_totient', totient_coprime_totient_iff, totient_div_of_dvd, totient_dvd_of_dvd, totient_eq_card_coprime, totient_eq_card_lt_and_coprime, totient_eq_div_primeFactors_mul, totient_eq_iff_prime, totient_eq_mul_prod_factors, totient_eq_one_iff, totient_eq_prod_factorization, totient_eq_zero, totient_even, totient_gcd_mul_totient_mul, totient_le, totient_lt, totient_mul, totient_mul_of_prime_of_dvd, totient_mul_of_prime_of_not_dvd, totient_mul_prod_primeFactors, totient_one, totient_pos, totient_prime, totient_prime_pow, totient_prime_pow_succ, totient_super_multiplicative, totient_two, totient_two_mul_of_even, totient_two_mul_of_odd, totient_zero, card_units_eq_totient
44
Total47

Even

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_totient_eq_totient πŸ“–β€”Even
Nat.totient
β€”β€”Nat.totient_eq_zero
Nat.totient_zero
Nat.eq_or_eq_of_totient_eq_totient
Iff.not
Nat.totient_mul_of_prime_of_dvd
Nat.prime_two
Nat.instAtLeastTwoHAddOfNat
even_iff_two_dvd

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalNatTotient πŸ“–CompOpβ€”

Nat

Definitions

NameCategoryTheorems
termΟ† πŸ“–CompOpβ€”
totient πŸ“–CompOp
93 mathmath: ArithmeticFunction.vonMangoldt.residueClass_eq, totient_dvd_of_dvd, IsPrimitiveRoot.totient_le_degree_minpoly, ArithmeticFunction.carmichael_pow_of_prime_ne_two, Polynomial.sub_one_pow_totient_le_cyclotomic_eval, odd_totient_iff, IsCyclotomicExtension.Rat.nrComplexPlaces_eq_totient_div_two, totient_mul_of_prime_of_not_dvd, Polynomial.cyclotomic_eval_lt_add_one_pow_totient, Polynomial.natDegree_cyclotomic, totient_eq_card_coprime, totient_prime_pow, IsCyclotomicExtension.Rat.discr_prime_pow', totient_eq_mul_prod_factors, odd_totient_iff_eq_one, totient_coprime_totient_iff, IsCyclotomicExtension.Rat.absdiscr_prime_pow, ZMod.pow_totient, totient_le, sum_totient, DirichletCharacter.sum_characters_eq, ArithmeticFunction.vonMangoldt.residueClass_apply, totient_prime, Polynomial.sub_one_pow_totient_lt_natAbs_cyclotomic_eval, ArithmeticFunction.two_mul_carmichael_two_pow_of_three_le_eq_totient, ZMod.card_units_eq_totient, totient_div_of_dvd, totient_mul_of_prime_of_dvd, IsCyclotomicExtension.finrank, DirichletCharacter.sum_char_inv_mul_char_eq, IsPrimitiveRoot.power_basis_int'_dim, IsCyclotomicExtension.Rat.discr, totient_zero, IsPrimitiveRoot.integralPowerBasisOfPrimePow_dim, AddCircle.card_addOrderOf_eq_totient, ArithmeticFunction.carmichael_two_pow_of_le_two_eq_totient, totient_gcd_mul_totient_mul, IsCyclotomicExtension.Rat.discr_prime_pow_ne_two', totient_mul, IsCyclotomicExtension.discr_prime_pow_ne_two, totient_two_mul_of_even, totient_eq_zero, ModEq.pow_totient, IsCyclic.card_mulAut, IsPrimitiveRoot.card_primitiveRoots, totient_two, sum_totient', IsAddCyclic.card_addOrderOf_eq_totient, primeCounting'_add_le, IsCyclotomicExtension.Rat.natAbs_discr, Polynomial.natDegree_cyclotomic_le, totient_two_mul_of_odd, totient_eq_iff_prime, IsCyclic.card_orderOf_eq_totient, ArithmeticFunction.carmichael_dvd_totient, IsCyclotomicExtension.Rat.discr_prime_pow, Complex.card_primitiveRoots, Ico_filter_coprime_le, pow_totient_mod_eq_one, ArithmeticFunction.vonMangoldt.LSeries_residueClass_lower_bound, ArithmeticFunction.vonMangoldt.LSeries_residueClass_eq, filter_coprime_Ico_eq_totient, neZero_totient, card_orderOf_eq_totient_auxβ‚‚, totient_eq_prod_factorization, Polynomial.degree_cyclotomic', IsCyclotomicExtension.Rat.finrank, IsPrimitiveRoot.integralPowerBasis_dim, pow_add_mul_totient_mod_eq, card_addOrderOf_eq_totient_auxβ‚‚, Polynomial.cyclotomic_eval_le_add_one_pow_totient, DirichletCharacter.card_eq_totient_of_hasEnoughRootsOfUnity, totient_prime_pow_succ, totient_super_multiplicative, totient_lt, pow_totient_mod, Polynomial.sub_one_pow_totient_lt_cyclotomic_eval, pow_add_totient_mod_eq, Polynomial.natDegree_cyclotomic', IsPrimitiveRoot.lcm_totient_le_finrank, totient_pos, totient_eq_card_lt_and_coprime, totient_eq_div_primeFactors_mul, ArithmeticFunction.vonMangoldt.eqOn_LFunctionResidueClassAux, Polynomial.degree_cyclotomic, Polynomial.normalizedFactors_cyclotomic_card, totient_eq_one_iff, totient_one, prime_pow_pow_totient_ediv_prod, prod_primeFactors_pow_totient_ediv_dvd, IsCyclotomicExtension.discr_prime_pow, totient_mul_prod_primeFactors, totient_even

Theorems

NameKindAssumesProvesValidatesDepends On
Ico_filter_coprime_le πŸ“–mathematicalβ€”Finset.card
Finset.filter
Finset.Ico
instPreorder
instLocallyFiniteOrder
totient
β€”filter_coprime_Ico_eq_totient
Finset.filter.congr_simp
MulZeroClass.mul_zero
add_zero
zero_add
mul_one
Finset.card_le_card
Finset.filter_subset_filter
Finset.Ico_subset_Ico
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_of_lt
pos_iff_ne_zero
instCanonicallyOrderedAdd
Finset.Ico_subset_Ico_union_Ico
Finset.filter_union
Finset.card_union_le
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
card_units_zmod_lt_sub_one πŸ“–mathematicalβ€”Fintype.card
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
β€”ZMod.card_units_eq_totient
LT.lt.ne'
pos_of_gt
instCanonicallyOrderedAdd
totient_lt
dvd_two_of_totient_le_one πŸ“–β€”totientβ€”β€”totient_eq_one_iff
le_antisymm
totient_pos
Mathlib.Meta.NormNum.isNat_dvd_true
Mathlib.Meta.NormNum.isNat_ofNat
eq_or_eq_of_totient_eq_totient πŸ“–β€”totientβ€”β€”totient_eq_zero
totient_zero
MulZeroClass.mul_zero
coprime_of_dvd
mul_comm
lt_of_lt_of_le
totient_mul_of_prime_of_dvd
totient_pos
pos_of_ne_zero
instCanonicallyOrderedAdd
Prime.one_lt
mul_assoc
totient_dvd_of_dvd
Eq.not_lt
totient_eq_one_iff
Iff.not
totient_mul
mul_one
filter_coprime_Ico_eq_totient πŸ“–mathematicalβ€”Finset.card
Finset.filter
Finset.Ico
instPreorder
instLocallyFiniteOrder
totient
β€”totient.eq_1
filter_Ico_card_eq_of_periodic
periodic_coprime
count_eq_card_filter_range
neZero_totient πŸ“–mathematicalβ€”MulZeroClass.toZero
instMulZeroClass
totient
β€”LT.lt.ne'
totient_pos
NeZero.pos
instCanonicallyOrderedAdd
odd_totient_iff πŸ“–mathematicalβ€”Odd
instSemiring
totient
β€”instCharZero
instAtLeastTwoHAddOfNat
zero_add
totient_two
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instNoMaxOrder
instCanonicallyOrderedAdd
odd_totient_iff_eq_one πŸ“–mathematicalβ€”Odd
instSemiring
totient
β€”β€”
prime_iff_card_units πŸ“–mathematicalβ€”Prime
Fintype.card
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
β€”eq_zero_or_neZero
zero_tsub
instCanonicallyOrderedAdd
instOrderedSub
instCharZero
instAtLeastTwoHAddOfNat
Fintype.card_congr'
ZMod.card_units_eq_totient
totient_eq_iff_prime
NeZero.pos
prime_pow_pow_totient_ediv_prod πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
totient
Finset.prod
instCommMonoid
primeFactors
β€”mul_left_comm
le_mul_of_one_le_right
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Right.one_le_mul
covariant_swap_mul_of_covariant_mul
instMulLeftMono
Prime.one_lt
totient_prime_pow
Finset.prod_congr
primeFactors_prime_pow
LT.lt.ne'
Finset.prod_singleton
Prime.pos
one_mul
mul_one
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
prod_primeFactors_pow_totient_ediv_dvd πŸ“–mathematicalβ€”Finset.prod
instCommMonoid
primeFactors
Monoid.toNatPow
instMonoid
totient
β€”prod_primeFactors_dvd
dvd_trans
Finset.prod_dvd_prod_of_dvd
Finset.prod_pow
LT.lt.ne'
totient_pos
sum_totient πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
divisors
totient
β€”Finset.sum_congr
divisors_zero
sum_div_divisors
Finset.card_range
Finset.card_eq_sum_card_fiberwise
mem_divisors
LT.lt.ne'
totient_div_of_dvd
dvd_of_mem_divisors
sum_totient' πŸ“–mathematicalβ€”Finset.sum
instAddCommMonoid
Finset.filter
Finset.range
totient
β€”Finset.sum_congr
Finset.filter.congr_simp
Finset.range_eq_Ico
Finset.sum_filter
Finset.sum_eq_sum_Ico_succ_bot
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instNoMaxOrder
instCanonicallyOrderedAdd
zero_add
sum_totient
totient_coprime_totient_iff πŸ“–mathematicalβ€”totientβ€”not_imp_not
instAtLeastTwoHAddOfNat
one_lt_two
instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
totient_div_of_dvd πŸ“–mathematicalβ€”totient
Finset.card
Finset.filter
Finset.range
β€”eq_zero_of_zero_dvd
Finset.filter.congr_simp
Finset.filter_empty
Finset.card_bij
mul_lt_mul_of_pos_left
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
mul_one
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
LT.lt.ne'
mul_lt_mul_iff_rightβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
totient_dvd_of_dvd πŸ“–mathematicalβ€”totientβ€”eq_or_ne
zero_dvd_iff
primeFactors_mono
totient_eq_prod_factorization
Finsupp.prod_dvd_prod_of_subset_of_dvd
mul_dvd_mul
pow_dvd_pow
tsub_le_tsub_right
instOrderedSub
factorization_le_iff_dvd
dvd_rfl
totient_eq_card_coprime πŸ“–mathematicalβ€”totient
Finset.card
Finset.filter
Finset.range
β€”β€”
totient_eq_card_lt_and_coprime πŸ“–mathematicalβ€”totient
card
Set.Elem
setOf
β€”Subtype.coe_eta
totient_eq_card_coprime
card_congr
card_eq_fintype_card
Fintype.card_coe
totient_eq_div_primeFactors_mul πŸ“–mathematicalβ€”totient
Finset.prod
instCommMonoid
primeFactors
β€”Finset.prod_pos
instZeroLEOneClass
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
instNontrivial
pos_of_mem_primeFactors
totient_mul_prod_primeFactors
mul_comm
prod_primeFactors_dvd
totient_eq_iff_prime πŸ“–mathematicalβ€”totient
Prime
β€”lt_of_le_of_ne
one_ne_zero
tsub_self
instCanonicallyOrderedAdd
instOrderedSub
totient_one
prime_of_coprime
Finset.filter_card_eq
card_Ico
dvd_refl
dvd_zero
Finset.filter_insert
Finset.insert_Ico_add_one_left_eq_Ico
LT.lt.le
Finset.range_eq_Ico
totient_eq_card_coprime
Finset.mem_Ico
totient_prime
totient_eq_mul_prod_factors πŸ“–mathematicalβ€”totient
Finset.prod
Rat.commMonoid
primeFactors
β€”CharP.cast_eq_zero
CharP.ofCharZero
Rat.instCharZero
Finset.prod_congr
primeFactors_zero
mul_one
cast_prod
cast_ne_zero
zero_lt_iff
prod_primeFactors_prod_factorization
Finset.prod_pos
instZeroLEOneClass
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
instNontrivial
pos_of_mem_primeFactors
totient_eq_div_primeFactors_mul
cast_mul
cast_div_charZero
prod_primeFactors_dvd
mul_comm_div
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Rat.isDomain
div_eq_iff
pos_of_mem_primeFactorsList
List.mem_toFinset
LT.lt.ne
sub_mul
one_mul
mul_comm
mul_inv_cancelβ‚€
cast_pred
totient_eq_one_iff πŸ“–mathematicalβ€”totientβ€”instCharZero
instAtLeastTwoHAddOfNat
totient_two
le_add_self
instCanonicallyOrderedAdd
not_even_one
totient_even
totient_eq_prod_factorization πŸ“–mathematicalβ€”totient
Finsupp.prod
MulZeroClass.toZero
instMulZeroClass
instCommMonoid
factorization
Monoid.toNatPow
instMonoid
β€”multiplicative_factorization
totient_mul
totient_one
Finsupp.prod_congr
zero_lt_iff
Finsupp.mem_support_iff
totient_prime_pow
prime_of_mem_primeFactors
totient_eq_zero πŸ“–mathematicalβ€”totientβ€”instNoMaxOrder
totient_even πŸ“–mathematicalβ€”Even
totient
β€”orderOf_units
Units.coe_neg_one
orderOf_neg_one
ZMod.nontrivial
LT.lt.trans
instAtLeastTwoHAddOfNat
one_lt_two
instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
ringChar.eq
ZMod.charP
LT.lt.ne'
NeZero.of_gt
instCanonicallyOrderedAdd
ZMod.card_units_eq_totient
even_iff_two_dvd
orderOf_dvd_card
totient_gcd_mul_totient_mul πŸ“–mathematicalβ€”totientβ€”mul_mul_mul_comm
totient_eq_div_primeFactors_mul
prod_primeFactors_dvd
prod_primeFactors_gcd_mul_prod_primeFactors_mul
mul_comm
mul_assoc
mul_dvd_mul
totient_le πŸ“–mathematicalβ€”totientβ€”LE.le.trans_eq
Finset.card_filter_le
Finset.card_range
totient_lt πŸ“–mathematicalβ€”totientβ€”LT.lt.trans_eq
Finset.card_lt_card
Finset.filter_ssubset
pos_of_gt
instCanonicallyOrderedAdd
LT.lt.ne'
Finset.card_range
totient_mul πŸ“–mathematicalβ€”totientβ€”MulZeroClass.zero_mul
MulZeroClass.mul_zero
left_ne_zero_of_mul
right_ne_zero_of_mul
Fintype.card_congr
Fintype.card_prod
totient_mul_of_prime_of_dvd πŸ“–mathematicalPrimetotientβ€”totient_gcd_mul_totient_mul
mul_comm
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
LT.lt.ne'
totient_pos
Prime.pos
mul_assoc
totient_mul_of_prime_of_not_dvd πŸ“–mathematicalPrimetotientβ€”totient_mul
coprime_or_dvd_of_prime
totient_prime
totient_mul_prod_primeFactors πŸ“–mathematicalβ€”totient
Finset.prod
instCommMonoid
primeFactors
β€”Finset.prod_congr
primeFactors_zero
mul_one
totient_eq_prod_factorization
factorization_prod_pow_eq_self
Finsupp.prod_congr
mul_comm
mul_assoc
zero_lt_iff
Finsupp.mem_support_iff
totient_one πŸ“–mathematicalβ€”totientβ€”β€”
totient_pos πŸ“–mathematicalβ€”totientβ€”instCanonicallyOrderedAdd
totient_prime πŸ“–mathematicalPrimetotientβ€”pow_one
totient_prime_pow
instZeroLEOneClass
tsub_self
instCanonicallyOrderedAdd
instOrderedSub
pow_zero
one_mul
totient_prime_pow πŸ“–mathematicalPrimetotient
Monoid.toNatPow
instMonoid
β€”pos_iff_ne_zero
instCanonicallyOrderedAdd
totient_prime_pow_succ
totient_prime_pow_succ πŸ“–mathematicalPrimetotient
Monoid.toNatPow
instMonoid
β€”totient_eq_card_coprime
Finset.sdiff_eq_filter
Finset.filter_congr
coprime_pow_left_iff
Prime.coprime_iff_not_dvd
dvd_mul_left
lt_of_mul_lt_mul_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
mul_comm
mul_left_injectiveβ‚€
IsCancelMulZero.toIsRightCancelMulZero
instIsCancelMulZero
Prime.ne_zero
mul_lt_mul_iff_leftβ‚€
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
Prime.pos
Finset.card_sdiff_of_subset
Finset.card_image_of_injective
Finset.card_range
one_mul
tsub_mul
instCanonicallyOrderedAdd
instOrderedSub
LE.total
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_mul_of_covariant_mul
instMulLeftMono
totient_super_multiplicative πŸ“–mathematicalβ€”totientβ€”LE.le.eq_or_lt
MulZeroClass.zero_mul
le_of_mul_le_mul_right
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
totient_gcd_mul_totient_mul
mul_comm
le_imp_le_of_le_of_le
mul_le_mul_right
instMulLeftMono
totient_le
le_refl
totient_two πŸ“–mathematicalβ€”totientβ€”totient_prime
prime_two
totient_two_mul_of_even πŸ“–mathematicalEventotientβ€”totient_mul_of_prime_of_dvd
prime_two
Even.two_dvd
totient_two_mul_of_odd πŸ“–mathematicalOdd
instSemiring
totientβ€”totient_mul_of_prime_of_not_dvd
prime_two
Odd.not_two_dvd_nat
one_mul
totient_zero πŸ“–mathematicalβ€”totientβ€”β€”

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
card_units_eq_totient πŸ“–mathematicalβ€”Fintype.card
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
Nat.totient
β€”Fintype.card_congr
Fintype.card_subtype
Finset.card_eq_sum_ones
Finset.sum_filter
Finset.filter.congr_simp

---

← Back to Index