Basic
📁 Source: Mathlib/Data/Num/Basic.lean
Statistics
Num
Definitions
| Name | Category | Theorems |
|---|---|---|
add 📖 | CompOp | — |
bit 📖 | CompOp | |
bit0 📖 | CompOp | |
bit1 📖 | CompOp | |
cmp 📖 | CompOp | |
decidableLE 📖 | CompOp | — |
decidableLT 📖 | CompOp | — |
div 📖 | CompOp | — |
div2 📖 | CompOp | — |
gcd 📖 | CompOp | |
gcdAux 📖 | CompOp | |
instAdd 📖 | CompOp | 13 mathmath:bit1_of_bit1, add_zero, add_one, bit0_of_bit0, add_ofNat', PosNum.cast_to_num, ofNat'_succ, cast_add, add_toZNum, zero_add, add_of_nat, add_succ, add_to_nat |
instDiv 📖 | CompOp | |
instLE 📖 | CompOp | |
instLT 📖 | CompOp | |
instMod 📖 | CompOp | |
instMul 📖 | CompOp | |
instSub 📖 | CompOp | |
mul 📖 | CompOp | — |
natSize 📖 | CompOp | |
ofNat' 📖 | CompOp | 8 mathmath:ofNat'_one, of_to_nat', PosNum.of_to_nat', ofNat'_zero, add_ofNat', ofNat'_bit, ofNat'_succ, ofNat'_eq |
ofZNum 📖 | CompOp | |
ofZNum' 📖 | CompOp | |
ppred 📖 | CompOp | |
pred 📖 | CompOp | |
psub 📖 | CompOp | — |
size 📖 | CompOp | |
sub 📖 | CompOp | — |
sub' 📖 | CompOp | |
succ 📖 | CompOp | |
succ' 📖 | CompOp | |
toZNum 📖 | CompOp | |
toZNumNeg 📖 | CompOp |
PosNum
Definitions
| Name | Category | Theorems |
|---|---|---|
add 📖 | CompOp | — |
bit 📖 | CompOp | |
cmp 📖 | CompOp | |
decidableLE 📖 | CompOp | — |
decidableLT 📖 | CompOp | — |
div' 📖 | CompOp | |
divMod 📖 | CompOp | |
divModAux 📖 | CompOp | |
instAdd 📖 | CompOp | |
instLE 📖 | CompOp | |
instLT 📖 | CompOp | |
instMul 📖 | CompOp | |
instOfNatHAddNatOfNat 📖 | CompOp | — |
instSub 📖 | CompOp | — |
isOne 📖 | CompOp | — |
mod' 📖 | CompOp | |
mul 📖 | CompOp | — |
natSize 📖 | CompOp | |
ofNat 📖 | CompOp | — |
ofNatSucc 📖 | CompOp | — |
ofZNum 📖 | CompOp | — |
ofZNum' 📖 | CompOp | — |
pred 📖 | CompOp | |
pred' 📖 | CompOp | 7 mathmath:one_sub', pred'_to_nat, succ'_pred', to_int_eq_succ_pred, sub'_one, to_nat_eq_succ_pred, pred'_succ' |
size 📖 | CompOp | |
sub 📖 | CompOp | — |
sub' 📖 | CompOp | |
succ 📖 | CompOp |
ZNum
Definitions
| Name | Category | Theorems |
|---|---|---|
abs 📖 | CompOp | |
add 📖 | CompOp | — |
bit0 📖 | CompOp | |
bit1 📖 | CompOp | |
bitm1 📖 | CompOp | |
cmp 📖 | CompOp | |
decidableLE 📖 | CompOp | — |
decidableLT 📖 | CompOp | — |
div 📖 | CompOp | — |
gcd 📖 | CompOp | |
instAdd 📖 | CompOp | 9 mathmath:cast_add, PosNum.cast_to_znum, bit0_of_bit0, Num.succ_ofInt', Num.add_toZNum, bit1_of_bit1, zero_add, add_zero, add_one |
instDiv 📖 | CompOp | |
instLE 📖 | CompOp | |
instLT 📖 | CompOp | |
instMod 📖 | CompOp | |
instMul 📖 | CompOp | |
instNeg 📖 | CompOp | 14 mathmath:neg_zero, zneg_succ, of_nat_toZNumNeg, cast_zneg, zneg_pos, neg_of_int, zneg_bit1, zneg_pred, Num.zneg_toZNumNeg, zneg_neg, Num.zneg_toZNum, ofInt'_neg, zneg_bitm1, zneg_zneg |
mul 📖 | CompOp | — |
ofInt' 📖 | CompOp | |
pred 📖 | CompOp | |
succ 📖 | CompOp | |
zNeg 📖 | CompOp | — |
(root)
Definitions
instDecidableEqNum
Definitions
| Name | Category | Theorems |
|---|---|---|
decEq 📖 | CompOp | — |
instDecidableEqPosNum
Definitions
| Name | Category | Theorems |
|---|---|---|
decEq 📖 | CompOp | — |
instDecidableEqZNum
Definitions
| Name | Category | Theorems |
|---|---|---|
decEq 📖 | CompOp | — |
---