Documentation Verification Report

Basic

📁 Source: Mathlib/Data/Num/Basic.lean

Statistics

MetricCount
DefinitionsNum, add, bit, bit0, bit1, cmp, decidableLE, decidableLT, div, div2, gcd, gcdAux, instAdd, instDiv, instLE, instLT, instMod, instMul, instSub, mul, natSize, ofNat', ofZNum, ofZNum', ppred, pred, psub, size, sub, sub', succ, succ', toZNum, toZNumNeg, PosNum, add, bit, cmp, decidableLE, decidableLT, div', divMod, divModAux, instAdd, instLE, instLT, instMul, instOfNatHAddNatOfNat, instSub, isOne, mod', mul, natSize, ofNat, ofNatSucc, ofZNum, ofZNum', pred, pred', size, sub, sub', succ, abs, add, bit0, bit1, bitm1, cmp, decidableLE, decidableLT, div, gcd, instAdd, instDiv, instLE, instLT, instMod, instMul, instNeg, mul, ofInt', pred, succ, zNeg, castNum, castPosNum, castZNum, instDecidableEqNum, decEq, instDecidableEqPosNum, decEq, instDecidableEqZNum, decEq, instInhabitedNum, instInhabitedPosNum, instInhabitedZNum, instOneNum, instOnePosNum, instOneZNum, instReprNum, instReprPosNum, instReprZNum, instZeroNum, instZeroZNum, numNatCoe, posNumCoe, znumCoe
108
Theorems0
Total108

Num

Definitions

NameCategoryTheorems
add 📖CompOp
bit 📖CompOp
1 mathmath: bit_to_nat
bit0 📖CompOp
4 mathmath: cast_bit0, bit0_of_bit0, ofNat'_bit, bit1_succ
bit1 📖CompOp
4 mathmath: bit1_of_bit1, cast_bit1, ofNat'_bit, bit1_succ
cmp 📖CompOp
4 mathmath: cmp_swap, cmp_eq, lt_iff_cmp, cmp_to_nat
decidableLE 📖CompOp
decidableLT 📖CompOp
div 📖CompOp
div2 📖CompOp
gcd 📖CompOp
1 mathmath: gcd_to_nat
gcdAux 📖CompOp
1 mathmath: gcd_to_nat_aux
instAdd 📖CompOp
13 mathmath: bit1_of_bit1, add_zero, add_one, bit0_of_bit0, add_ofNat', PosNum.cast_to_num, ofNat'_succ, cast_add, add_toZNum, zero_add, add_of_nat, add_succ, add_to_nat
instDiv 📖CompOp
2 mathmath: div_to_nat, div_zero
instLE 📖CompOp
3 mathmath: cast_le, le_to_nat, le_iff_cmp
instLT 📖CompOp
3 mathmath: cast_lt, lt_iff_cmp, lt_to_nat
instMod 📖CompOp
3 mathmath: dvd_iff_mod_eq_zero, mod_to_nat, mod_zero
instMul 📖CompOp
2 mathmath: cast_mul, mul_to_nat
instSub 📖CompOp
1 mathmath: sub_to_nat
mul 📖CompOp
natSize 📖CompOp
2 mathmath: natSize_to_nat, size_eq_natSize
ofNat' 📖CompOp
8 mathmath: ofNat'_one, of_to_nat', PosNum.of_to_nat', ofNat'_zero, add_ofNat', ofNat'_bit, ofNat'_succ, ofNat'_eq
ofZNum 📖CompOp
2 mathmath: cast_ofZNum, ofZNum_toNat
ofZNum' 📖CompOp
2 mathmath: mem_ofZNum', ofZNum'_toNat
ppred 📖CompOp
1 mathmath: ppred_to_nat
pred 📖CompOp
1 mathmath: pred_to_nat
psub 📖CompOp
size 📖CompOp
2 mathmath: size_to_nat, size_eq_natSize
sub 📖CompOp
sub' 📖CompOp
1 mathmath: cast_sub'
succ 📖CompOp
7 mathmath: toZNumNeg_succ, add_one, cast_succ, succ_to_nat, bit1_succ, toZNum_succ, add_succ
succ' 📖CompOp
4 mathmath: succ'_to_nat, PosNum.succ'_pred', cast_succ', PosNum.pred'_succ'
toZNum 📖CompOp
11 mathmath: ZNum.abs_toZNum, toZNum_inj, zneg_toZNumNeg, ofInt'_toZNum, add_toZNum, mem_ofZNum', zneg_toZNum, ZNum.of_nat_toZNum, PosNum.sub'_one, toZNum_succ, cast_toZNum
toZNumNeg 📖CompOp
6 mathmath: ZNum.of_nat_toZNumNeg, PosNum.one_sub', toZNumNeg_succ, zneg_toZNumNeg, zneg_toZNum, cast_toZNumNeg

PosNum

Definitions

NameCategoryTheorems
add 📖CompOp
bit 📖CompOp
1 mathmath: bit_to_nat
cmp 📖CompOp
4 mathmath: cmp_swap, cmp_eq, cmp_to_nat, lt_iff_cmp
decidableLE 📖CompOp
decidableLT 📖CompOp
div' 📖CompOp
1 mathmath: div'_to_nat
divMod 📖CompOp
1 mathmath: divMod_to_nat
divModAux 📖CompOp
1 mathmath: divMod_to_nat_aux
instAdd 📖CompOp
7 mathmath: add_one, bit0_of_bit0, cast_add, add_succ, bit1_of_bit1, add_to_nat, one_add
instLE 📖CompOp
3 mathmath: le_iff_cmp, cast_le, le_to_nat
instLT 📖CompOp
3 mathmath: lt_to_nat, lt_iff_cmp, cast_lt
instMul 📖CompOp
2 mathmath: cast_mul, mul_to_nat
instOfNatHAddNatOfNat 📖CompOp
instSub 📖CompOp
isOne 📖CompOp
mod' 📖CompOp
1 mathmath: mod'_to_nat
mul 📖CompOp
natSize 📖CompOp
3 mathmath: size_eq_natSize, natSize_pos, natSize_to_nat
ofNat 📖CompOp
ofNatSucc 📖CompOp
ofZNum 📖CompOp
ofZNum' 📖CompOp
pred 📖CompOp
1 mathmath: pred_to_nat
pred' 📖CompOp
7 mathmath: one_sub', pred'_to_nat, succ'_pred', to_int_eq_succ_pred, sub'_one, to_nat_eq_succ_pred, pred'_succ'
size 📖CompOp
2 mathmath: size_to_nat, size_eq_natSize
sub 📖CompOp
sub' 📖CompOp
3 mathmath: one_sub', cast_sub', sub'_one
succ 📖CompOp
5 mathmath: cast_succ, add_one, add_succ, succ_to_nat, one_add

ZNum

Definitions

NameCategoryTheorems
abs 📖CompOp
2 mathmath: abs_toZNum, abs_to_nat
add 📖CompOp
bit0 📖CompOp
2 mathmath: bit0_of_bit0, cast_bit0
bit1 📖CompOp
4 mathmath: zneg_bit1, cast_bit1, bit1_of_bit1, zneg_bitm1
bitm1 📖CompOp
3 mathmath: zneg_bit1, cast_bitm1, zneg_bitm1
cmp 📖CompOp
1 mathmath: cmp_to_int
decidableLE 📖CompOp
decidableLT 📖CompOp
div 📖CompOp
gcd 📖CompOp
1 mathmath: gcd_to_nat
instAdd 📖CompOp
9 mathmath: cast_add, PosNum.cast_to_znum, bit0_of_bit0, Num.succ_ofInt', Num.add_toZNum, bit1_of_bit1, zero_add, add_zero, add_one
instDiv 📖CompOp
2 mathmath: div_zero, div_to_int
instLE 📖CompOp
3 mathmath: zeroLEOneClass, le_to_int, cast_le
instLT 📖CompOp
2 mathmath: cast_lt, lt_to_int
instMod 📖CompOp
2 mathmath: mod_to_int, dvd_iff_mod_eq_zero
instMul 📖CompOp
2 mathmath: cast_mul, mul_to_int
instNeg 📖CompOp
14 mathmath: neg_zero, zneg_succ, of_nat_toZNumNeg, cast_zneg, zneg_pos, neg_of_int, zneg_bit1, zneg_pred, Num.zneg_toZNumNeg, zneg_neg, Num.zneg_toZNum, ofInt'_neg, zneg_bitm1, zneg_zneg
mul 📖CompOp
ofInt' 📖CompOp
5 mathmath: Num.ofInt'_toZNum, Num.succ_ofInt', ofInt'_neg, of_to_int', ofInt'_eq
pred 📖CompOp
4 mathmath: zneg_succ, Num.toZNumNeg_succ, zneg_pred, Num.pred_succ
succ 📖CompOp
6 mathmath: zneg_succ, cast_succ, zneg_pred, Num.pred_succ, Num.toZNum_succ, add_one
zNeg 📖CompOp

(root)

Definitions

NameCategoryTheorems
Num 📖CompData
63 mathmath: Num.ofNat'_one, Num.cast_lt, Num.bit1_of_bit1, ZNum.of_nat_toZNumNeg, PosNum.land_eq_and, Num.div_to_nat, Num.sub_to_nat, Num.toNat_injective, Num.add_zero, Num.cast_le, PosNum.of_to_nat, Num.cast_zero, Num.castNum_shiftRight, Num.add_one, Num.castNum_xor, Num.to_of_nat, Num.castNum_shiftLeft, Num.of_to_nat, Num.isStrictOrderedRing, Num.lt_iff_cmp, Num.shiftr_eq_shiftRight, Num.bit0_of_bit0, Num.castNum_or, Num.shiftl_eq_shiftLeft, PosNum.shiftr_eq_shiftRight, Num.ofNat'_zero, Num.add_ofNat', Num.lxor_eq_xor, Num.castNum_and, PosNum.lxor_eq_xor, Num.lt_to_nat, Num.ppred_to_nat, PosNum.cast_to_num, Num.ofNat'_succ, Num.ofInt'_toZNum, Num.cast_add, Num.dvd_iff_mod_eq_zero, Num.cast_one, Num.dvd_to_nat, Num.add_toZNum, Num.zero_add, Num.add_of_nat, PosNum.divMod_to_nat_aux, Num.mem_ofZNum', PosNum.divMod_to_nat, ZNum.of_nat_toZNum, Num.cmp_to_nat, Num.ofZNum'_toNat, Num.land_eq_and, Num.le_to_nat, Num.cast_mul, Num.of_natCast, Num.mod_to_nat, Num.mod_zero, Num.ofNat'_eq, Num.mul_to_nat, Num.add_succ, Num.of_nat_inj, Num.isOrderedCancelAddMonoid, Num.div_zero, Num.le_iff_cmp, Num.add_to_nat, Num.lor_eq_or
PosNum 📖CompData
26 mathmath: PosNum.shiftl_eq_shiftLeft, PosNum.land_eq_and, PosNum.one_sub', PosNum.cast_mul, PosNum.cast_one, PosNum.add_one, PosNum.shiftr_eq_shiftRight, PosNum.bit0_of_bit0, PosNum.cast_add, PosNum.add_succ, PosNum.lxor_eq_xor, PosNum.lt_to_nat, PosNum.le_iff_cmp, PosNum.cast_le, PosNum.le_to_nat, PosNum.lor_eq_or, PosNum.bit1_of_bit1, PosNum.mul_to_nat, PosNum.add_to_nat, PosNum.shiftl_succ_eq_bit0_shiftl, PosNum.cmp_to_nat, PosNum.lt_iff_cmp, PosNum.dvd_to_nat, PosNum.sub'_one, PosNum.cast_lt, PosNum.one_add
castNum 📖CompOp
64 mathmath: Num.cast_to_int, Num.minFac_to_nat, Num.cast_lt, Num.gcd_to_nat_aux, Num.of_to_nat', Num.div_to_nat, Num.sub_to_nat, Num.succ'_to_nat, Num.toNat_injective, Num.castNum_eq_bitwise, Num.cast_le, ZNum.gcd_to_nat, Num.cast_bit0, Num.cast_zero', Num.cast_zero, Num.castNum_shiftRight, Num.size_to_nat, Num.castNum_xor, Num.to_of_nat, Num.castNum_shiftLeft, Num.of_to_nat, PosNum.pred'_to_nat, Num.cast_bit1, Num.castNum_or, Num.cast_succ, Num.cast_to_nat, Num.castNum_ldiff, Num.cast_sub', Num.cast_ofZNum, Num.succ_to_nat, PosNum.to_int_eq_succ_pred, PosNum.div'_to_nat, Num.castNum_and, Num.ofZNum_toNat, Num.lt_to_nat, Num.ppred_to_nat, Num.bit_to_nat, PosNum.mod'_to_nat, Num.cast_succ', Num.cast_add, Num.cast_inj, ZNum.abs_to_nat, Num.cast_one, Num.dvd_to_nat, PosNum.divMod_to_nat, Num.cmp_to_nat, Num.to_nat_to_int, Num.ofZNum'_toNat, Num.natSize_to_nat, Num.le_to_nat, Num.cast_mul, Num.of_natCast, Num.mod_to_nat, Num.to_nat_inj, Num.gcd_to_nat, Num.castNum_testBit, Num.size_eq_natSize, Num.mul_to_nat, PosNum.to_nat_eq_succ_pred, Num.pred_to_nat, Num.cast_toZNumNeg, Num.cast_pos, Num.cast_toZNum, Num.add_to_nat
castPosNum 📖CompOp
47 mathmath: Num.minFac_to_nat, PosNum.pred_to_nat, PosNum.cast_bit1, Num.succ'_to_nat, ZNum.cast_neg, PosNum.of_to_nat, PosNum.size_to_nat, PosNum.cast_mul, PosNum.cast_one, PosNum.size_eq_natSize, PosNum.to_nat_pos, PosNum.cast_succ, PosNum.pred'_to_nat, PosNum.of_to_nat', PosNum.bit_to_nat, PosNum.cast_to_int, PosNum.to_nat_inj, PosNum.cast_to_znum, PosNum.cast_add, PosNum.to_int_eq_succ_pred, PosNum.natSize_to_nat, PosNum.div'_to_nat, PosNum.lt_to_nat, PosNum.cast_le, PosNum.le_to_nat, PosNum.cast_to_nat, PosNum.cast_one', PosNum.cast_to_num, PosNum.mod'_to_nat, Num.cast_succ', PosNum.mul_to_nat, PosNum.add_to_nat, PosNum.cast_pos, PosNum.cmp_to_nat, PosNum.divMod_to_nat, ZNum.cast_pos, PosNum.cast_bit0, PosNum.one_le_cast, PosNum.cast_inj, PosNum.cast_sub', PosNum.dvd_to_nat, PosNum.to_nat_to_int, PosNum.to_nat_eq_succ_pred, PosNum.cast_lt, PosNum.succ_to_nat, Num.cast_pos, PosNum.minFac_to_nat
castZNum 📖CompOp
39 mathmath: ZNum.cast_zneg, ZNum.of_natCast, ZNum.cast_neg, ZNum.gcd_to_nat, ZNum.cmp_to_int, ZNum.of_intCast, ZNum.cast_succ, ZNum.mod_to_int, ZNum.cast_add, ZNum.cast_lt, ZNum.le_to_int, ZNum.cast_one, Num.cast_sub', Num.cast_ofZNum, ZNum.cast_inj, ZNum.cast_le, Num.ofZNum_toNat, ZNum.cast_zero', ZNum.cast_bit0, ZNum.cast_bitm1, ZNum.abs_to_nat, ZNum.to_of_int, ZNum.cast_zero, ZNum.of_to_int, ZNum.cast_bit1, ZNum.cast_mul, ZNum.div_to_int, ZNum.lt_to_int, ZNum.cast_pos, Num.ofZNum'_toNat, ZNum.cast_to_int, PosNum.cast_sub', ZNum.dvd_to_int, ZNum.cast_sub, ZNum.to_int_inj, ZNum.mul_to_int, Num.cast_toZNumNeg, ZNum.of_to_int', Num.cast_toZNum
instDecidableEqNum 📖CompOp
instDecidableEqPosNum 📖CompOp
instDecidableEqZNum 📖CompOp
instInhabitedNum 📖CompOp
instInhabitedPosNum 📖CompOp
instInhabitedZNum 📖CompOp
instOneNum 📖CompOp
6 mathmath: Num.ofNat'_one, Num.bit1_of_bit1, Num.add_one, PosNum.cast_to_num, Num.ofNat'_succ, Num.cast_one
instOnePosNum 📖CompOp
6 mathmath: PosNum.one_sub', PosNum.cast_one, PosNum.add_one, PosNum.bit1_of_bit1, PosNum.sub'_one, PosNum.one_add
instOneZNum 📖CompOp
6 mathmath: ZNum.zeroLEOneClass, ZNum.cast_one, PosNum.cast_to_znum, Num.succ_ofInt', ZNum.bit1_of_bit1, ZNum.add_one
instReprNum 📖CompOp
instReprPosNum 📖CompOp
instReprZNum 📖CompOp
instZeroNum 📖CompOp
7 mathmath: Num.add_zero, Num.cast_zero, Num.ofNat'_zero, Num.dvd_iff_mod_eq_zero, Num.zero_add, Num.mod_zero, Num.div_zero
instZeroZNum 📖CompOp
7 mathmath: ZNum.neg_zero, ZNum.zeroLEOneClass, ZNum.cast_zero, ZNum.dvd_iff_mod_eq_zero, ZNum.div_zero, ZNum.zero_add, ZNum.add_zero
numNatCoe 📖CompOp
posNumCoe 📖CompOp
znumCoe 📖CompOp

instDecidableEqNum

Definitions

NameCategoryTheorems
decEq 📖CompOp

instDecidableEqPosNum

Definitions

NameCategoryTheorems
decEq 📖CompOp

instDecidableEqZNum

Definitions

NameCategoryTheorems
decEq 📖CompOp

---

← Back to Index