Documentation Verification Report

Bitwise

πŸ“ Source: Mathlib/Data/Num/Bitwise.lean

Statistics

MetricCount
DefinitionsinstAndOp, instHShiftLeftNat, instHShiftRightNat, instOrOp, instXorOp, land, ldiff, lor, lxor, oneBits, shiftl, shiftr, testBit, NzsNum, bit0, bit1, drec', head, not, sign, tail, Β«term_::_Β», Β«term~_Β», instHAndNum, instHShiftLeftNat, instHShiftRightNatNum, instHXorNum, instOrOp, land, ldiff, lor, lxor, oneBits, shiftl, shiftr, testBit, SNum, add, bit, bit0, bit1, bits, cAdd, czAdd, drec', head, instAdd, instMul, instNeg, instSub, mul, neg, not, pred, rec', sign, sub, succ, tail, testBit, Β«term_::_Β», Β«term~_Β», instCoeNzsNumSNum, instDecidableEqNzsNum, decEq, instDecidableEqSNum, decEq, instInhabitedNzsNum, instInhabitedSNum, instOneNzsNum, instOneSNum, instZeroSNum
72
Theoremsland_eq_and, lor_eq_or, lxor_eq_xor, shiftl_eq_shiftLeft, shiftr_eq_shiftRight, land_eq_and, lor_eq_or, lxor_eq_xor, shiftl_eq_shiftLeft, shiftl_succ_eq_bit0_shiftl, shiftr_eq_shiftRight, bit_one, bit_zero
13
Total85

Num

Definitions

NameCategoryTheorems
instAndOp πŸ“–CompOp
2 mathmath: castNum_and, land_eq_and
instHShiftLeftNat πŸ“–CompOp
2 mathmath: castNum_shiftLeft, shiftl_eq_shiftLeft
instHShiftRightNat πŸ“–CompOp
2 mathmath: castNum_shiftRight, shiftr_eq_shiftRight
instOrOp πŸ“–CompOp
2 mathmath: castNum_or, lor_eq_or
instXorOp πŸ“–CompOp
2 mathmath: castNum_xor, lxor_eq_xor
land πŸ“–CompOp
1 mathmath: land_eq_and
ldiff πŸ“–CompOp
1 mathmath: castNum_ldiff
lor πŸ“–CompOp
1 mathmath: lor_eq_or
lxor πŸ“–CompOp
1 mathmath: lxor_eq_xor
oneBits πŸ“–CompOpβ€”
shiftl πŸ“–CompOp
1 mathmath: shiftl_eq_shiftLeft
shiftr πŸ“–CompOp
1 mathmath: shiftr_eq_shiftRight
testBit πŸ“–CompOp
1 mathmath: castNum_testBit

Theorems

NameKindAssumesProvesValidatesDepends On
land_eq_and πŸ“–mathematicalβ€”land
Num
instAndOp
β€”β€”
lor_eq_or πŸ“–mathematicalβ€”lor
Num
instOrOp
β€”β€”
lxor_eq_xor πŸ“–mathematicalβ€”lxor
Num
instXorOp
β€”β€”
shiftl_eq_shiftLeft πŸ“–mathematicalβ€”shiftl
Num
instHShiftLeftNat
β€”β€”
shiftr_eq_shiftRight πŸ“–mathematicalβ€”shiftr
Num
instHShiftRightNat
β€”β€”

NzsNum

Definitions

NameCategoryTheorems
bit0 πŸ“–CompOpβ€”
bit1 πŸ“–CompOpβ€”
drec' πŸ“–CompOpβ€”
head πŸ“–CompOpβ€”
not πŸ“–CompOpβ€”
sign πŸ“–CompOpβ€”
tail πŸ“–CompOpβ€”
Β«term_::_Β» πŸ“–CompOpβ€”
Β«term~_Β» πŸ“–CompOpβ€”

PosNum

Definitions

NameCategoryTheorems
instHAndNum πŸ“–CompOp
1 mathmath: land_eq_and
instHShiftLeftNat πŸ“–CompOp
2 mathmath: shiftl_eq_shiftLeft, shiftl_succ_eq_bit0_shiftl
instHShiftRightNatNum πŸ“–CompOp
1 mathmath: shiftr_eq_shiftRight
instHXorNum πŸ“–CompOp
1 mathmath: lxor_eq_xor
instOrOp πŸ“–CompOp
1 mathmath: lor_eq_or
land πŸ“–CompOp
1 mathmath: land_eq_and
ldiff πŸ“–CompOpβ€”
lor πŸ“–CompOp
1 mathmath: lor_eq_or
lxor πŸ“–CompOp
1 mathmath: lxor_eq_xor
oneBits πŸ“–CompOpβ€”
shiftl πŸ“–CompOp
1 mathmath: shiftl_eq_shiftLeft
shiftr πŸ“–CompOp
1 mathmath: shiftr_eq_shiftRight
testBit πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
land_eq_and πŸ“–mathematicalβ€”land
PosNum
Num
instHAndNum
β€”β€”
lor_eq_or πŸ“–mathematicalβ€”lor
PosNum
instOrOp
β€”β€”
lxor_eq_xor πŸ“–mathematicalβ€”lxor
PosNum
Num
instHXorNum
β€”β€”
shiftl_eq_shiftLeft πŸ“–mathematicalβ€”shiftl
PosNum
instHShiftLeftNat
β€”β€”
shiftl_succ_eq_bit0_shiftl πŸ“–mathematicalβ€”PosNum
instHShiftLeftNat
bit0
β€”β€”
shiftr_eq_shiftRight πŸ“–mathematicalβ€”shiftr
PosNum
Num
instHShiftRightNatNum
β€”β€”

SNum

Definitions

NameCategoryTheorems
add πŸ“–CompOpβ€”
bit πŸ“–CompOp
2 mathmath: bit_zero, bit_one
bit0 πŸ“–CompOpβ€”
bit1 πŸ“–CompOpβ€”
bits πŸ“–CompOpβ€”
cAdd πŸ“–CompOpβ€”
czAdd πŸ“–CompOpβ€”
drec' πŸ“–CompOpβ€”
head πŸ“–CompOpβ€”
instAdd πŸ“–CompOpβ€”
instMul πŸ“–CompOpβ€”
instNeg πŸ“–CompOpβ€”
instSub πŸ“–CompOpβ€”
mul πŸ“–CompOpβ€”
neg πŸ“–CompOpβ€”
not πŸ“–CompOpβ€”
pred πŸ“–CompOpβ€”
rec' πŸ“–CompOpβ€”
sign πŸ“–CompOpβ€”
sub πŸ“–CompOpβ€”
succ πŸ“–CompOpβ€”
tail πŸ“–CompOpβ€”
testBit πŸ“–CompOpβ€”
Β«term_::_Β» πŸ“–CompOpβ€”
Β«term~_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bit_one πŸ“–mathematicalβ€”bit
zero
nz
NzsNum.msb
β€”β€”
bit_zero πŸ“–mathematicalβ€”bit
zero
β€”β€”

(root)

Definitions

NameCategoryTheorems
NzsNum πŸ“–CompDataβ€”
SNum πŸ“–CompDataβ€”
instCoeNzsNumSNum πŸ“–CompOpβ€”
instDecidableEqNzsNum πŸ“–CompOpβ€”
instDecidableEqSNum πŸ“–CompOpβ€”
instInhabitedNzsNum πŸ“–CompOpβ€”
instInhabitedSNum πŸ“–CompOpβ€”
instOneNzsNum πŸ“–CompOpβ€”
instOneSNum πŸ“–CompOpβ€”
instZeroSNum πŸ“–CompOpβ€”

instDecidableEqNzsNum

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

instDecidableEqSNum

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

---

← Back to Index