Documentation Verification Report

Prime

📁 Source: Mathlib/Data/Num/Prime.lean

Statistics

MetricCount
DefinitionsPrime, decidablePrime, minFac, decidablePrime, minFac, minFacAux
6
TheoremsminFac_to_nat, minFacAux_to_nat, minFac_to_nat
3
Total9

Num

Definitions

NameCategoryTheorems
Prime 📖MathDef
decidablePrime 📖CompOp
minFac 📖CompOp
1 mathmath: minFac_to_nat

Theorems

NameKindAssumesProvesValidatesDepends On
minFac_to_nat 📖mathematicalcastPosNum
Nat.instOne
minFac
Nat.minFac
castNum
MulZeroClass.toZero
Nat.instMulZeroClass
PosNum.minFac_to_nat

PosNum

Definitions

NameCategoryTheorems
decidablePrime 📖CompOp
minFac 📖CompOp
1 mathmath: minFac_to_nat
minFacAux 📖CompOp
1 mathmath: minFacAux_to_nat

Theorems

NameKindAssumesProvesValidatesDepends On
minFacAux_to_nat 📖mathematicalcastPosNum
Nat.instOne
bit1
minFacAux
Nat.minFacAux
minFacAux.eq_1
Nat.minFacAux.eq_1
Nat.sqrt_lt
minFacAux.eq_2
Nat.instIsStrictOrderedRing
cast_succ
add_left_comm
add_assoc
minFac_to_nat 📖mathematicalcastPosNum
Nat.instOne
minFac
Nat.minFac
Nat.minFac_one
minFac.eq_3
Nat.minFac_eq
Nat.instAtLeastTwoHAddOfNat
minFacAux_to_nat
Nat.sqrt_lt
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instIsStrictOrderedRing
mul_add
Distrib.leftDistribClass
mul_one
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Nat.instNontrivial
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
Nat.instCanonicallyOrderedAdd
minFac.eq_2

---

← Back to Index