Documentation Verification Report

Ordnode

πŸ“ Source: Mathlib/Data/Ordmap/Ordnode.lean

Statistics

MetricCount
DefinitionsOrdnode, All, decidable, Amem, decidable, Any, decidable, Emem, decidable, adjustWith, alter, attach', balance, balanceL, balanceR, copair, delta, diff, disjoint, drop, dropAux, dropWhile, dual, empty, erase, eraseMax, eraseMin, filter, find, findGe, findGeAux, findGt, findGtAux, findIndex, findIndexAux, findLe, findLeAux, findLt, findLtAux, findMax, findMax', findMin, findMin', fold, foldl, foldr, glue, image, insert, insert', insertMax, insertMin, insertWith, instDecidableRelEquivOfDecidableEq, instEmptyCollection, instInhabited, instInsert, instMembership, instRepr, instSingleton, instToFormat, instToString, inter, isSubset, isSubsetAux, link, map, mem, decidable, merge, node', nth, ofAscList, ofAscListAux₁, ofAscListAuxβ‚‚, ofList, ofList', partition, pmap, powerset, prod, ratio, removeNth, repr, singleton, size, span, split, split3, splitAt, splitAtAux, splitMax, splitMax', splitMin, splitMin', take, takeAux, takeWhile, toList, toRevList, union, updateWith
102
Theoremssize_nil, size_node
2
Total104

Ordnode

Definitions

NameCategoryTheorems
All πŸ“–MathDef
16 mathmath: Bounded.to_sep, all_node4R, all_dual, all_node3R, all_singleton, all_node4L, all_node', all_rotateL, all_balance', all_iff_forall, all_rotateR, all_node3L, all_balanceL, all_balanceR, Bounded.mem_gt, Bounded.mem_lt
Amem πŸ“–MathDefβ€”
Any πŸ“–MathDef
2 mathmath: any_singleton, any_iff_exists
Emem πŸ“–MathDef
3 mathmath: any_iff_exists, emem_iff_mem_toList, emem_iff_all
adjustWith πŸ“–CompOpβ€”
alter πŸ“–CompOpβ€”
attach' πŸ“–CompOpβ€”
balance πŸ“–CompOp
3 mathmath: balance_eq_balance', balanceL_eq_balance, Valid'.balance
balanceL πŸ“–CompOp
10 mathmath: Valid'.balanceL, balanceL_eq_balance', dual_balanceL, size_balanceL, balanceL_eq_balance, merge_node, dual_balanceR, Valid'.merge_aux₁, Valid'.balanceL_aux, all_balanceL
balanceR πŸ“–CompOp
8 mathmath: dual_balanceL, Valid'.balanceR_aux, merge_node, size_balanceR, dual_balanceR, balanceR_eq_balance', Valid'.balanceR, all_balanceR
copair πŸ“–CompOpβ€”
delta πŸ“–CompOp
2 mathmath: merge_node, not_le_delta
diff πŸ“–CompOpβ€”
disjoint πŸ“–CompOpβ€”
drop πŸ“–CompOpβ€”
dropAux πŸ“–CompOpβ€”
dropWhile πŸ“–CompOpβ€”
dual πŸ“–CompOp
30 mathmath: Valid.dual_iff, balance_sz_dual, dual_node', Sized.dual_iff, dual_balanceL, dual_eraseMax, Bounded.dual, all_dual, Valid.dual, size_dual, dual_eraseMin, dual_node4L, dual_node3L, dual_balanceR, dual_rotateR, dual_node4R, findMax'_dual, Balanced.dual, findMin_dual, dual_rotateL, dual_balance', findMin'_dual, dual_node3R, findMax_dual, dual_insert, Sized.dual, Valid'.dual, Bounded.dual_iff, Valid'.dual_iff, dual_dual
empty πŸ“–CompOp
1 bridgebridge: Ordset.empty_iff
erase πŸ“–CompOp
3 mathmath: erase.valid, size_erase_of_mem, Valid'.erase_aux
eraseMax πŸ“–CompOp
5 mathmath: dual_eraseMax, eraseMax.valid, dual_eraseMin, splitMax_eq, Valid'.eraseMax_aux
eraseMin πŸ“–CompOp
5 mathmath: eraseMin.valid, dual_eraseMax, dual_eraseMin, splitMin_eq, Valid'.eraseMin_aux
filter πŸ“–CompOpβ€”
find πŸ“–CompOpβ€”
findGe πŸ“–CompOpβ€”
findGeAux πŸ“–CompOpβ€”
findGt πŸ“–CompOpβ€”
findGtAux πŸ“–CompOpβ€”
findIndex πŸ“–CompOpβ€”
findIndexAux πŸ“–CompOpβ€”
findLe πŸ“–CompOpβ€”
findLeAux πŸ“–CompOpβ€”
findLt πŸ“–CompOpβ€”
findLtAux πŸ“–CompOpβ€”
findMax πŸ“–CompOp
2 mathmath: findMin_dual, findMax_dual
findMax' πŸ“–CompOp
5 mathmath: findMax'_all, splitMax_eq, findMax'_dual, findMin'_dual, Valid'.eraseMax_aux
findMin πŸ“–CompOp
2 mathmath: findMin_dual, findMax_dual
findMin' πŸ“–CompOp
5 mathmath: splitMin_eq, findMax'_dual, Valid'.eraseMin_aux, findMin'_dual, findMin'_all
fold πŸ“–CompOpβ€”
foldl πŸ“–CompOpβ€”
foldr πŸ“–CompOp
1 mathmath: foldr_cons_eq_toList
glue πŸ“–CompOp
3 mathmath: Valid'.glue_aux, merge_node, Valid'.glue
image πŸ“–CompOpβ€”
insert πŸ“–CompOp
3 mathmath: dual_insert, insert_eq_insertWith, insert.valid
insert' πŸ“–CompOp
2 mathmath: insert'_eq_insertWith, insert'.valid
insertMax πŸ“–CompOpβ€”
insertMin πŸ“–CompOpβ€”
insertWith πŸ“–CompOp
4 mathmath: insertWith.valid, insert'_eq_insertWith, insertWith.valid_aux, insert_eq_insertWith
instDecidableRelEquivOfDecidableEq πŸ“–CompOpβ€”
instEmptyCollection πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instInsert πŸ“–CompOpβ€”
instMembership πŸ“–CompOpβ€”
instRepr πŸ“–CompOpβ€”
instSingleton πŸ“–CompOp
4 mathmath: any_singleton, all_singleton, valid_singleton, valid'_singleton
instToFormat πŸ“–CompOpβ€”
instToString πŸ“–CompOpβ€”
inter πŸ“–CompOpβ€”
isSubset πŸ“–CompOpβ€”
isSubsetAux πŸ“–CompOpβ€”
link πŸ“–CompOpβ€”
map πŸ“–CompOp
2 mathmath: map.valid, Valid'.map_aux
mem πŸ“–CompOpβ€”
merge πŸ“–CompOp
5 mathmath: merge_nil_right, merge_nil_left, Valid.merge, merge_node, Valid'.merge_aux
node' πŸ“–CompOp
10 mathmath: dual_node', Sized.eq_node', all_node', Sized.node', Valid'.eraseMin_aux, rotateR_nil, Valid'.node', Raised.right, rotateL_nil, Valid'.eraseMax_aux
nth πŸ“–CompOpβ€”
ofAscList πŸ“–CompOpβ€”
ofAscListAux₁ πŸ“–CompOpβ€”
ofAscListAuxβ‚‚ πŸ“–CompOpβ€”
ofList πŸ“–CompOpβ€”
ofList' πŸ“–CompOpβ€”
partition πŸ“–CompOpβ€”
pmap πŸ“–CompOpβ€”
powerset πŸ“–CompOpβ€”
prod πŸ“–CompOpβ€”
ratio πŸ“–CompOp
2 mathmath: rotateL_node, rotateR_node
removeNth πŸ“–CompOpβ€”
repr πŸ“–CompOpβ€”
singleton πŸ“–CompOpβ€”
size πŸ“–CompOp
24 mathmath: node4L_size, size_node, node3R_size, size_eq_realSize, size_nil, Sized.size_eq_zero, pos_size_of_mem, size_dual, Sized.rotateL_size, length_toList, Valid'.map_aux, insertWith.valid_aux, size_erase_of_mem, Sized.rotateR_size, Valid'.eraseMin_aux, size_balance', Valid'.merge_aux, rotateL_node, Valid'.erase_aux, rotateR_node, node3L_size, Valid.size_eq, Sized.size_eq, Valid'.eraseMax_aux
span πŸ“–CompOpβ€”
split πŸ“–CompOpβ€”
split3 πŸ“–CompOpβ€”
splitAt πŸ“–CompOpβ€”
splitAtAux πŸ“–CompOpβ€”
splitMax πŸ“–CompOpβ€”
splitMax' πŸ“–CompOp
1 mathmath: splitMax_eq
splitMin πŸ“–CompOpβ€”
splitMin' πŸ“–CompOp
1 mathmath: splitMin_eq
take πŸ“–CompOpβ€”
takeAux πŸ“–CompOpβ€”
takeWhile πŸ“–CompOpβ€”
toList πŸ“–CompOp
7 mathmath: toList_nil, foldr_cons_eq_toList, toList_node, length_toList, equiv_iff, emem_iff_mem_toList, length_toList'
toRevList πŸ“–CompOpβ€”
union πŸ“–CompOpβ€”
updateWith πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
size_nil πŸ“–mathematicalβ€”size
nil
β€”β€”
size_node πŸ“–mathematicalβ€”size
node
β€”β€”

Ordnode.All

Definitions

NameCategoryTheorems
decidable πŸ“–CompOpβ€”

Ordnode.Amem

Definitions

NameCategoryTheorems
decidable πŸ“–CompOpβ€”

Ordnode.Any

Definitions

NameCategoryTheorems
decidable πŸ“–CompOpβ€”

Ordnode.Emem

Definitions

NameCategoryTheorems
decidable πŸ“–CompOpβ€”

Ordnode.mem

Definitions

NameCategoryTheorems
decidable πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
Ordnode πŸ“–CompData
9 math, 1 bridgemath: Ordnode.any_singleton, Ordnode.merge_node, Ordnode.splitMax_eq, Ordnode.all_singleton, Ordnode.valid_singleton, Ordnode.splitMin_eq, Ordnode.valid'_singleton, Ordnode.rotateL_node, Ordnode.rotateR_node
bridge: Ordset.empty_iff

---

← Back to Index