Documentation Verification Report

Ordset

πŸ“ Source: Mathlib/Data/Ordmap/Ordset.lean

Statistics

MetricCount
DefinitionsValid, Valid', Ordset, instDecidablePred, erase, find, insert, insert', instEmptyCollection, instInhabited, instInsert, instMembership, instSingleton, map, mem, decidable, nil, singleton, size
19
Theoremsbal, balance, balance', balance'_aux, balance'_lemma, balanceL, balanceL_aux, balanceR, balanceR_aux, dual, dual_iff, eraseMax_aux, eraseMin_aux, erase_aux, glue, glue_aux, left, map_aux, merge_aux, merge_aux₁, merge_lemma, mono_left, mono_right, node, node', node3L, node3R, node4L, node4L_lemma₁, node4L_lemmaβ‚‚, node4L_lemma₃, node4L_lemmaβ‚„, node4L_lemmaβ‚…, of_gt, of_lt, ord, right, rotateL, rotateL_lemma₁, rotateL_lemmaβ‚‚, rotateL_lemma₃, rotateL_lemmaβ‚„, rotateR, sz, trans_left, trans_right, valid, dual, dual_iff, left, merge, right, size_eq, valid, valid, valid, valid, insert'_eq_insertWith, valid, valid, valid_aux, insert_eq_insertWith, valid, size_erase_of_mem, valid'_nil, valid'_singleton, valid_nil, valid_singleton, empty_iff, pos_size_of_mem
70
Total89

Ordnode

Definitions

NameCategoryTheorems
Valid πŸ“–MathDef
4 math, 1 bridgemath: Valid.dual_iff, Valid'.valid, valid_nil, valid_singleton
bridge: Ordset.empty_iff
Valid' πŸ“–CompData
3 mathmath: valid'_singleton, Valid'.dual_iff, valid'_nil

Theorems

NameKindAssumesProvesValidatesDepends On
insert'_eq_insertWith πŸ“–mathematicalβ€”insert'
Preorder.toLE
insertWith
β€”insert'.eq_def
insertWith.eq_def
insert_eq_insertWith πŸ“–mathematicalβ€”insert
Preorder.toLE
insertWith
β€”insert.eq_def
insertWith.eq_def
size_erase_of_mem πŸ“–mathematicalValid'
Ordnode
instMembership
Preorder.toLE
size
erase
β€”Valid'.left
Valid'.right
erase.eq_def
Valid'.erase_aux
size_balanceR
Valid'.bal
Valid'.sz
pos_size_of_mem
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Valid'.glue
size_balanceL
valid'_nil πŸ“–mathematicalBounded
nil
Valid'β€”β€”
valid'_singleton πŸ“–mathematicalBounded
nil
WithTop.some
WithBot.some
Valid'
Ordnode
instSingleton
β€”Valid'.node
valid'_nil
zero_le_one
Nat.instZeroLEOneClass
valid_nil πŸ“–mathematicalβ€”Valid
nil
β€”valid'_nil
valid_singleton πŸ“–mathematicalβ€”Valid
Ordnode
instSingleton
β€”valid'_singleton

Ordnode.Valid

Theorems

NameKindAssumesProvesValidatesDepends On
dual πŸ“–mathematicalOrdnode.ValidOrderDual
OrderDual.instPreorder
Ordnode.dual
β€”Ordnode.Valid'.dual
dual_iff πŸ“–mathematicalβ€”Ordnode.Valid
OrderDual
OrderDual.instPreorder
Ordnode.dual
β€”Ordnode.Valid'.dual_iff
left πŸ“–β€”Ordnode.Valid
Ordnode.node
β€”β€”Ordnode.Valid'.valid
Ordnode.Valid'.left
merge πŸ“–mathematicalOrdnode.Valid
Ordnode.All
Preorder.toLT
Ordnode.mergeβ€”Ordnode.Valid'.merge_aux
right πŸ“–β€”Ordnode.Valid
Ordnode.node
β€”β€”Ordnode.Valid'.valid
Ordnode.Valid'.right
size_eq πŸ“–mathematicalOrdnode.Valid
Ordnode.node
Ordnode.sizeβ€”Ordnode.Valid'.sz

Ordnode.Valid'

Theorems

NameKindAssumesProvesValidatesDepends On
bal πŸ“–mathematicalOrdnode.Valid'Ordnode.Balancedβ€”β€”
balance πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.BalancedSz
Nat.dist
Ordnode.size
Ordnode.balanceβ€”Ordnode.balance_eq_balance'
bal
sz
balance'
balance' πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.BalancedSz
Nat.dist
Ordnode.size
Ordnode.balance'β€”balance'_aux
balance'_lemma
Ordnode.BalancedSz.symm
balance'_aux πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.size
Ordnode.balance'β€”Ordnode.balance'.eq_1
node'
rotateL
rotateR
not_lt
balance'_lemma πŸ“–β€”Ordnode.BalancedSz
Nat.dist
Ordnode.size
β€”β€”le_trans
Nat.dist_tri_right
Nat.dist_tri_left'
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Nat.dist_tri_right'
balanceL πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.Raised
Ordnode.size
Ordnode.BalancedSz
Ordnode.balanceLβ€”Ordnode.balanceL_eq_balance'
bal
sz
balance'
Ordnode.Raised.dist_le'
Ordnode.Raised.dist_le
balanceL_aux πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.size
Ordnode.delta
Ordnode.balanceLβ€”Ordnode.balanceL_eq_balance
sz
Ordnode.balance_eq_balance'
bal
balance'_aux
le_trans
balanceR πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.Raised
Ordnode.size
Ordnode.BalancedSz
Ordnode.balanceRβ€”dual_iff
Ordnode.dual_balanceR
balanceL
dual
Ordnode.balance_sz_dual
balanceR_aux πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.size
Ordnode.delta
Ordnode.balanceRβ€”dual_iff
Ordnode.dual_balanceR
balanceL_aux
dual
Ordnode.size_dual
dual πŸ“–mathematicalOrdnode.Valid'OrderDual
OrderDual.instPreorder
Ordnode.dual
β€”Ordnode.valid'_nil
Ordnode.Bounded.dual
ord
add_comm
Ordnode.size_dual
Ordnode.BalancedSz.symm
dual_iff πŸ“–mathematicalβ€”Ordnode.Valid'
OrderDual
OrderDual.instPreorder
Ordnode.dual
β€”dual
OrderDual.Preorder.dual_dual
Ordnode.dual_dual
eraseMax_aux πŸ“–mathematicalOrdnode.Valid'
Ordnode.node
Ordnode.eraseMax
Ordnode.node'
WithTop.some
Ordnode.findMax'
Ordnode.size
β€”Ordnode.Sized.eq_node'
sz
left
right
balanceL
bal
Ordnode.eraseMax.eq_3
Ordnode.size_balanceL
Ordnode.size_node
eraseMin_aux πŸ“–mathematicalOrdnode.Valid'
Ordnode.node
WithBot.some
Ordnode.findMin'
Ordnode.eraseMin
Ordnode.node'
Ordnode.size
β€”eraseMax_aux
dual
Ordnode.findMax'_dual
dual_iff
Ordnode.size_dual
Ordnode.dual_eraseMin
Ordnode.dual_node'
erase_aux πŸ“–mathematicalOrdnode.Valid'Ordnode.erase
Preorder.toLE
Ordnode.Raised
Ordnode.size
β€”zero_add
left
right
sz
bal
balanceR
Ordnode.size_balanceR
Ordnode.Raised.add_right
glue
balanceL
Ordnode.size_balanceL
Ordnode.Raised.add_left
glue πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.BalancedSz
Ordnode.size
Ordnode.glueβ€”glue_aux
trans_right
ord
trans_left
Ordnode.Bounded.to_sep
glue_aux πŸ“–mathematicalOrdnode.Valid'
Ordnode.All
Preorder.toLT
Ordnode.BalancedSz
Ordnode.size
Ordnode.glueβ€”zero_add
Ordnode.splitMax_eq
eraseMax_aux
Ordnode.Sized.eq_node'
sz
balanceR
of_gt
Ordnode.findMax'_all
Ordnode.Bounded.to_nil
ord
Ordnode.All.imp
Ordnode.Bounded.mono_left
le_of_lt
Ordnode.size_balanceR
bal
add_right_comm
Ordnode.splitMin_eq
eraseMin_aux
balanceL
of_lt
Ordnode.findMin'_all
Ordnode.Bounded.mono_right
Ordnode.all_iff_forall
Ordnode.size_balanceL
add_assoc
left πŸ“–mathematicalOrdnode.Valid'
Ordnode.node
WithTop.someβ€”ord
sz
bal
map_aux πŸ“–mathematicalStrictMono
Ordnode.Valid'
Ordnode.map
Ordnode.size
β€”Ordnode.valid'_nil
ord
left
right
sz
bal
merge_aux πŸ“–mathematicalOrdnode.Valid'
Ordnode.All
Preorder.toLT
Ordnode.merge
Ordnode.size
β€”zero_add
Ordnode.merge_node
of_lt
Ordnode.Bounded.to_nil
ord
Ordnode.All.imp
left
merge_aux₁
right
of_gt
dual
add_comm
Ordnode.size_dual
dual_iff
Ordnode.dual_balanceR
glue_aux
not_lt
merge_aux₁ πŸ“–mathematicalOrdnode.Valid'
Ordnode.node
Ordnode.delta
WithTop.some
Ordnode.size
Ordnode.balanceLβ€”bal
Ordnode.delta.eq_1
sz
add_right_comm
balanceL_aux
right
merge_lemma
Ordnode.balanceL_eq_balance
Ordnode.balance_eq_balance'
Ordnode.size_balance'
Mathlib.Tactic.Abel.subst_into_add
Mathlib.Tactic.Abel.term_atom
Mathlib.Tactic.Abel.term_add_const
zero_add
Mathlib.Tactic.Abel.term_add_term
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
add_zero
Mathlib.Tactic.Abel.const_add_term
merge_lemma πŸ“–β€”β€”β€”β€”β€”
mono_left πŸ“–β€”Preorder.toLE
Ordnode.Valid'
WithBot.some
β€”β€”Ordnode.Bounded.mono_left
ord
sz
bal
mono_right πŸ“–β€”Preorder.toLE
Ordnode.Valid'
WithTop.some
β€”β€”Ordnode.Bounded.mono_right
ord
sz
bal
node πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.BalancedSz
Ordnode.size
Ordnode.nodeβ€”ord
sz
bal
node' πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.BalancedSz
Ordnode.size
Ordnode.node'β€”node
node3L πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.BalancedSz
Ordnode.size
Ordnode.node3Lβ€”node'
node3R πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.BalancedSz
Ordnode.size
Ordnode.node3Rβ€”node'
node4L πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.size
Ordnode.ratio
Ordnode.delta
Ordnode.node4Lβ€”add_eq_zero
Unique.instSubsingleton
Nat.instCanonicallyOrderedAdd
Ordnode.Sized.size_eq
sz
not_le_of_gt
zero_add
bal
MulZeroClass.mul_zero
le_trans
mul_add
Distrib.leftDistribClass
mul_left_comm
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instAtLeastTwoHAddOfNat
two_mul
add_lt_add_of_lt_of_le
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
one_mul
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
node4L_lemma₁
node4L_lemmaβ‚‚
node4L_lemma₃
node4L_lemmaβ‚„
node4L_lemmaβ‚…
node'
left
right
node4L_lemma₁ πŸ“–β€”β€”β€”β€”β€”
node4L_lemmaβ‚‚ πŸ“–β€”β€”β€”β€”β€”
node4L_lemma₃ πŸ“–β€”β€”β€”β€”β€”
node4L_lemmaβ‚„ πŸ“–β€”β€”β€”β€”β€”
node4L_lemmaβ‚… πŸ“–β€”β€”β€”β€”β€”
of_gt πŸ“–β€”Ordnode.Valid'
Ordnode.Bounded
Ordnode.nil
WithBot.some
Ordnode.All
Preorder.toLT
β€”β€”Ordnode.Bounded.of_gt
ord
sz
bal
of_lt πŸ“–β€”Ordnode.Valid'
Ordnode.Bounded
Ordnode.nil
WithTop.some
Ordnode.All
Preorder.toLT
β€”β€”Ordnode.Bounded.of_lt
ord
sz
bal
ord πŸ“–mathematicalOrdnode.Valid'Ordnode.Boundedβ€”β€”
right πŸ“–mathematicalOrdnode.Valid'
Ordnode.node
WithBot.someβ€”ord
sz
bal
rotateL πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.size
Ordnode.delta
Ordnode.rotateLβ€”Ordnode.Sized.size_eq
sz
le_trans
Ordnode.rotateL_node
mul_lt_mul_iff_rightβ‚€
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
lt_of_le_of_lt
bal
le_antisymm
Ordnode.balancedSz_zero
Ordnode.BalancedSz.symm
add_comm
rotateL_lemma₁
rotateL_lemmaβ‚‚
rotateL_lemma₃
node3L
left
right
not_lt
node4L
zero_le_one
Nat.instZeroLEOneClass
rotateL_lemmaβ‚„
rotateL_lemma₁ πŸ“–β€”β€”β€”β€”β€”
rotateL_lemmaβ‚‚ πŸ“–β€”β€”β€”β€”β€”
rotateL_lemma₃ πŸ“–β€”β€”β€”β€”β€”
rotateL_lemmaβ‚„ πŸ“–β€”β€”β€”β€”β€”
rotateR πŸ“–mathematicalOrdnode.Valid'
WithTop.some
WithBot.some
Ordnode.size
Ordnode.delta
Ordnode.rotateRβ€”dual_iff
Ordnode.dual_rotateR
rotateL
dual
Ordnode.size_dual
add_comm
sz πŸ“–mathematicalOrdnode.Valid'Ordnode.Sizedβ€”β€”
trans_left πŸ“–β€”Ordnode.Bounded
WithTop.some
Ordnode.Valid'
WithBot.some
β€”β€”Ordnode.Bounded.trans_left
ord
sz
bal
trans_right πŸ“–β€”Ordnode.Valid'
WithTop.some
Ordnode.Bounded
WithBot.some
β€”β€”Ordnode.Bounded.trans_right
ord
sz
bal
valid πŸ“–mathematicalOrdnode.Valid'Ordnode.Validβ€”Ordnode.Bounded.weak
ord
sz
bal

Ordnode.erase

Theorems

NameKindAssumesProvesValidatesDepends On
valid πŸ“–mathematicalOrdnode.ValidOrdnode.erase
Preorder.toLE
β€”Ordnode.Valid'.erase_aux

Ordnode.eraseMax

Theorems

NameKindAssumesProvesValidatesDepends On
valid πŸ“–mathematicalOrdnode.ValidOrdnode.eraseMaxβ€”Ordnode.Valid.dual_iff
Ordnode.dual_eraseMax
Ordnode.eraseMin.valid
Ordnode.Valid.dual

Ordnode.eraseMin

Theorems

NameKindAssumesProvesValidatesDepends On
valid πŸ“–mathematicalOrdnode.ValidOrdnode.eraseMinβ€”Ordnode.valid_nil
Ordnode.Sized.eq_node'
Ordnode.Valid'.sz
Ordnode.Valid'.valid
Ordnode.Valid'.eraseMin_aux

Ordnode.insert

Theorems

NameKindAssumesProvesValidatesDepends On
valid πŸ“–mathematicalOrdnode.ValidOrdnode.insert
Preorder.toLE
β€”Ordnode.insert_eq_insertWith
Ordnode.insertWith.valid
le_rfl

Ordnode.insert'

Theorems

NameKindAssumesProvesValidatesDepends On
valid πŸ“–mathematicalOrdnode.ValidOrdnode.insert'
Preorder.toLE
β€”Ordnode.insert'_eq_insertWith
Ordnode.insertWith.valid

Ordnode.insertWith

Theorems

NameKindAssumesProvesValidatesDepends On
valid πŸ“–mathematicalPreorder.toLE
Ordnode.Valid
Ordnode.insertWithβ€”valid_aux
valid_aux πŸ“–mathematicalPreorder.toLE
Ordnode.Valid'
Ordnode.Bounded
Ordnode.nil
WithTop.some
WithBot.some
Ordnode.insertWith
Ordnode.Raised
Ordnode.size
β€”Ordnode.valid'_singleton
eq_2
cmpLE.eq_1
Ordnode.Bounded.mono_right
le_trans
Ordnode.Bounded.mono_left
Ordnode.Valid'.left
lt_of_le_not_ge
Ordnode.Valid'.bal
Ordnode.Valid'.balanceL
Ordnode.Valid'.right
Ordnode.size_balanceL
Ordnode.Valid'.sz
Ordnode.Sized.size_eq
Ordnode.Raised.add_right
total_of
Ordnode.Valid'.balanceR
Ordnode.size_balanceR
Ordnode.Raised.add_left

Ordnode.map

Theorems

NameKindAssumesProvesValidatesDepends On
valid πŸ“–mathematicalStrictMono
Ordnode.Valid
Ordnode.mapβ€”Ordnode.Valid'.map_aux

Ordset

Definitions

NameCategoryTheorems
erase πŸ“–CompOpβ€”
find πŸ“–CompOpβ€”
insert πŸ“–CompOpβ€”
insert' πŸ“–CompOpβ€”
instEmptyCollection πŸ“–CompOp
1 bridgebridge: empty_iff
instInhabited πŸ“–CompOpβ€”
instInsert πŸ“–CompOpβ€”
instMembership πŸ“–CompOpβ€”
instSingleton πŸ“–CompOpβ€”
map πŸ“–CompOpβ€”
mem πŸ“–CompOpβ€”
nil πŸ“–CompOpβ€”
singleton πŸ“–CompOpβ€”
size πŸ“–CompOp
1 mathmath: pos_size_of_mem

Theorems

NameKindAssumesProvesValidatesDepends On
empty_iff πŸ“–bridging (iff)β€”Ordset
instEmptyCollection
Ordnode.empty
Ordnode
Ordnode.Valid
Ordnode.emptyβ€”
pos_size_of_mem πŸ“–mathematicalOrdset
instMembership
sizeβ€”Ordnode.pos_size_of_mem
Ordnode.Valid'.sz

Ordset.Empty

Definitions

NameCategoryTheorems
instDecidablePred πŸ“–CompOpβ€”

Ordset.mem

Definitions

NameCategoryTheorems
decidable πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
Ordset πŸ“–CompOp
1 bridgebridge: Ordset.empty_iff

---

← Back to Index