Documentation Verification Report

PEquiv

πŸ“ Source: Mathlib/Data/PEquiv.lean

Statistics

MetricCount
DefinitionstoPEquiv, PEquiv, instBotPEquiv, instFunLikeOption, instInhabited, instOrderBot, instPartialOrderPEquiv, instSemilatticeInfOfDecidableEq, invFun, ofSet, refl, single, toFun, trans, _Β»
15
TheoremstoPEquiv_apply, toPEquiv_refl, toPEquiv_symm, toPEquiv_trans, bot_apply, bot_trans, coe_mk, coe_mk_apply, eq_some_iff, ext, ext_iff, inj, injective_of_forall_isSome, injective_of_forall_ne_isSome, inv, isSome_symm_get, le_def, mem_iff_mem, mem_ofSet_iff, mem_ofSet_self_iff, mem_single, mem_single_iff, mem_trans, ofSet_eq_refl, ofSet_eq_some_iff, ofSet_eq_some_self_iff, ofSet_symm, ofSet_univ, refl_apply, refl_trans, self_trans_symm, single_apply, single_apply_of_ne, single_subsingleton_eq_refl, single_trans_of_eq_none, single_trans_of_mem, single_trans_single, single_trans_single_of_ne, symm_bijective, symm_bot, symm_injective, symm_refl, symm_single, symm_symm, symm_trans_rev, symm_trans_self, trans_assoc, trans_bot, trans_eq_none, trans_eq_some, trans_refl, trans_single_of_eq_none, trans_single_of_mem, trans_symm_eq_iff_forall_isSome
54
Total69

Equiv

Definitions

NameCategoryTheorems
toPEquiv πŸ“–CompOp
12 mathmath: PEquiv.vecMul_toMatrix_toPEquiv, toPEquiv_apply, PEquiv.toMatrix_toPEquiv_mulVec, PEquiv.toMatrix_toPEquiv_eq, toPEquiv_symm, PEquiv.toMatrix_toPEquiv_mul, toPEquiv_refl, PEquiv.transpose_toMatrix_toPEquiv_apply, toPEquiv_trans, PEquiv.mul_toMatrix_toPEquiv, PEquiv.toMatrix_toPEquiv_apply, PEquiv.toMatrix_swap

Theorems

NameKindAssumesProvesValidatesDepends On
toPEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
PEquiv.instFunLikeOption
toPEquiv
Equiv
EquivLike.toFunLike
instEquivLike
β€”β€”
toPEquiv_refl πŸ“–mathematicalβ€”toPEquiv
refl
PEquiv.refl
β€”β€”
toPEquiv_symm πŸ“–mathematicalβ€”toPEquiv
symm
PEquiv.symm
β€”β€”
toPEquiv_trans πŸ“–mathematicalβ€”toPEquiv
trans
PEquiv.trans
β€”β€”

PEquiv

Definitions

NameCategoryTheorems
instBotPEquiv πŸ“–CompOp
8 mathmath: single_trans_of_eq_none, toMatrix_bot, single_trans_single_of_ne, trans_single_of_eq_none, symm_bot, bot_trans, trans_bot, bot_apply
instFunLikeOption πŸ“–CompOp
26 mathmath: Equiv.toPEquiv_apply, mem_iff_mem, single_apply_of_ne, trans_symm_eq_iff_forall_isSome, mul_toMatrix_apply, trans_eq_some, ofSet_eq_some_iff, trans_eq_none, coe_mk, symm_trans_self, coe_mk_apply, refl_apply, ofSet_eq_some_self_iff, ext_iff, mem_trans, mem_ofSet_self_iff, eq_some_iff, single_apply, mem_single, mem_ofSet_iff, toMatrix_apply, toMatrix_mul_apply, le_def, self_trans_symm, mem_single_iff, bot_apply
instInhabited πŸ“–CompOpβ€”
instOrderBot πŸ“–CompOpβ€”
instPartialOrderPEquiv πŸ“–CompOp
1 mathmath: le_def
instSemilatticeInfOfDecidableEq πŸ“–CompOpβ€”
invFun πŸ“–CompOp
1 mathmath: inv
ofSet πŸ“–CompOp
9 mathmath: ofSet_symm, ofSet_eq_some_iff, symm_trans_self, ofSet_eq_some_self_iff, mem_ofSet_self_iff, mem_ofSet_iff, ofSet_univ, self_trans_symm, ofSet_eq_refl
refl πŸ“–CompOp
10 mathmath: trans_symm_eq_iff_forall_isSome, trans_refl, Equiv.toPEquiv_refl, symm_refl, refl_apply, single_subsingleton_eq_refl, refl_trans, toMatrix_refl, ofSet_univ, ofSet_eq_refl
single πŸ“–CompOp
16 mathmath: single_mul_single_of_ne, single_trans_of_eq_none, single_apply_of_ne, symm_single, single_trans_single_of_ne, single_mul_single_right, trans_single_of_mem, single_subsingleton_eq_refl, single_trans_single, trans_single_of_eq_none, single_apply, mem_single, mem_single_iff, toMatrix_swap, single_trans_of_mem, single_mul_single
toFun πŸ“–CompOp
1 mathmath: inv
trans πŸ“–CompOp
20 mathmath: single_trans_of_eq_none, trans_symm_eq_iff_forall_isSome, trans_eq_some, trans_refl, trans_eq_none, symm_trans_self, single_trans_single_of_ne, mem_trans, trans_single_of_mem, single_trans_single, trans_single_of_eq_none, refl_trans, symm_trans_rev, bot_trans, self_trans_symm, Equiv.toPEquiv_trans, toMatrix_trans, trans_bot, single_trans_of_mem, trans_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
bot_apply πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
Bot.bot
instBotPEquiv
β€”β€”
bot_trans πŸ“–mathematicalβ€”trans
Bot.bot
PEquiv
instBotPEquiv
β€”ext
coe_mk πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
β€”β€”
coe_mk_apply πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
β€”β€”
eq_some_iff πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
symm
β€”inv
ext πŸ“–β€”DFunLike.coe
PEquiv
instFunLikeOption
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
β€”ext
inj πŸ“–β€”DFunLike.coe
PEquiv
instFunLikeOption
β€”β€”mem_iff_mem
injective_of_forall_isSome πŸ“–β€”DFunLike.coe
PEquiv
instFunLikeOption
β€”β€”injective_of_forall_ne_isSome
injective_of_forall_ne_isSome πŸ“–β€”DFunLike.coe
PEquiv
instFunLikeOption
β€”β€”not_imp_comm
eq_some_iff
inv πŸ“–mathematicalβ€”invFun
toFun
β€”β€”
isSome_symm_get πŸ“–mathematicalDFunLike.coe
PEquiv
instFunLikeOption
symmβ€”eq_some_iff
le_def πŸ“–mathematicalβ€”PEquiv
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderPEquiv
DFunLike.coe
instFunLikeOption
β€”β€”
mem_iff_mem πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
symm
β€”inv
mem_ofSet_iff πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
ofSet
Set
Set.instMembership
β€”β€”
mem_ofSet_self_iff πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
ofSet
Set
Set.instMembership
β€”β€”
mem_single πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
single
β€”β€”
mem_single_iff πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
single
β€”β€”
mem_trans πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
trans
β€”β€”
ofSet_eq_refl πŸ“–mathematicalβ€”ofSet
refl
Set.univ
β€”Set.eq_univ_iff_forall
mem_ofSet_self_iff
ofSet.congr_simp
ofSet_eq_some_iff πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
ofSet
Set
Set.instMembership
β€”mem_ofSet_iff
ofSet_eq_some_self_iff πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
ofSet
Set
Set.instMembership
β€”mem_ofSet_self_iff
ofSet_symm πŸ“–mathematicalβ€”symm
ofSet
β€”β€”
ofSet_univ πŸ“–mathematicalβ€”ofSet
Set.univ
Set.decidableUniv
refl
β€”β€”
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
refl
β€”β€”
refl_trans πŸ“–mathematicalβ€”trans
refl
β€”ext
self_trans_symm πŸ“–mathematicalβ€”trans
symm
ofSet
setOf
DFunLike.coe
PEquiv
instFunLikeOption
Set.decidableSetOf
β€”ext
eq_some_iff
single_apply πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
single
β€”β€”
single_apply_of_ne πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
single
β€”β€”
single_subsingleton_eq_refl πŸ“–mathematicalβ€”single
refl
β€”ext
single_trans_of_eq_none πŸ“–mathematicalDFunLike.coe
PEquiv
instFunLikeOption
trans
single
Bot.bot
instBotPEquiv
β€”symm_injective
trans_single_of_eq_none
single_trans_of_mem πŸ“–mathematicalDFunLike.coe
PEquiv
instFunLikeOption
trans
single
β€”ext
Option.bind_congr'
single_trans_single πŸ“–mathematicalβ€”trans
single
β€”single_trans_of_mem
mem_single
single_trans_single_of_ne πŸ“–mathematicalβ€”trans
single
Bot.bot
PEquiv
instBotPEquiv
β€”single_trans_of_eq_none
single_apply_of_ne
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
PEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_bot πŸ“–mathematicalβ€”symm
Bot.bot
PEquiv
instBotPEquiv
β€”β€”
symm_injective πŸ“–mathematicalβ€”PEquiv
symm
β€”Function.Bijective.injective
symm_bijective
symm_refl πŸ“–mathematicalβ€”symm
refl
β€”β€”
symm_single πŸ“–mathematicalβ€”symm
single
β€”β€”
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_trans_rev πŸ“–mathematicalβ€”symm
trans
β€”β€”
symm_trans_self πŸ“–mathematicalβ€”trans
symm
ofSet
setOf
DFunLike.coe
PEquiv
instFunLikeOption
Set.decidableSetOf
β€”symm_injective
self_trans_symm
trans_assoc πŸ“–mathematicalβ€”transβ€”ext
trans_bot πŸ“–mathematicalβ€”trans
Bot.bot
PEquiv
instBotPEquiv
β€”ext
Option.bind_congr'
trans_eq_none πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
trans
β€”imp_iff_not_or
Mathlib.Tactic.Push.not_and_eq
forall_swap
trans_eq_some πŸ“–mathematicalβ€”DFunLike.coe
PEquiv
instFunLikeOption
trans
β€”β€”
trans_refl πŸ“–mathematicalβ€”trans
refl
β€”ext
Option.bind_congr'
trans_single_of_eq_none πŸ“–mathematicalDFunLike.coe
PEquiv
instFunLikeOption
symm
trans
single
Bot.bot
instBotPEquiv
β€”ext
eq_some_iff
trans_single_of_mem πŸ“–mathematicalDFunLike.coe
PEquiv
instFunLikeOption
trans
single
β€”symm_injective
single_trans_of_mem
mem_iff_mem
trans_symm_eq_iff_forall_isSome πŸ“–mathematicalβ€”trans
symm
refl
DFunLike.coe
PEquiv
instFunLikeOption
β€”self_trans_symm
ofSet_eq_refl
Set.eq_univ_iff_forall

(root)

Definitions

NameCategoryTheorems
PEquiv πŸ“–CompData
34 mathmath: Equiv.toPEquiv_apply, PEquiv.mem_iff_mem, PEquiv.single_apply_of_ne, PEquiv.trans_symm_eq_iff_forall_isSome, PEquiv.toMatrix_bot, PEquiv.mul_toMatrix_apply, PEquiv.trans_eq_some, PEquiv.ofSet_eq_some_iff, PEquiv.trans_eq_none, PEquiv.coe_mk, PEquiv.symm_trans_self, PEquiv.coe_mk_apply, PEquiv.refl_apply, PEquiv.ofSet_eq_some_self_iff, PEquiv.single_trans_single_of_ne, PEquiv.ext_iff, PEquiv.mem_trans, PEquiv.symm_bijective, PEquiv.mem_ofSet_self_iff, PEquiv.eq_some_iff, PEquiv.single_apply, PEquiv.mem_single, PEquiv.mem_ofSet_iff, PEquiv.toMatrix_injective, PEquiv.toMatrix_apply, PEquiv.toMatrix_mul_apply, PEquiv.symm_injective, PEquiv.symm_bot, PEquiv.le_def, PEquiv.bot_trans, PEquiv.self_trans_symm, PEquiv.mem_single_iff, PEquiv.trans_bot, PEquiv.bot_apply
Β«term_≃._Β» πŸ“–CompOpβ€”

---

← Back to Index