Documentation Verification Report

PFun

πŸ“ Source: Mathlib/Data/PFun.lean

Statistics

MetricCount
DefinitionsPFun, Dom, asSubtype, bind, comp, core, equivSubtype, evalOpt, fix, fixInduction, fixInduction', fn, graph, graph', id, image, inhabited, map, monad, preimage, prodLift, prodMap, pure, ran, res, restrict, toSubtype, _Β»
28
Theoremsbind_comp, Preimage_def, asSubtype_eq_of_mem, bind_apply, bind_defined, coe_comp, coe_id, coe_preimage, coe_val, comp_apply, comp_assoc, comp_id, compl_dom_subset_core, core_def, core_eq, core_inter, core_mono, core_res, core_restrict, dom_coe, dom_comp, dom_eq, dom_iff_graph, dom_mk, dom_of_mem_fix, dom_prodLift, dom_prodMap, dom_toSubtype, dom_toSubtype_apply_iff, ext, ext', ext_iff, fixInduction'_fwd, fixInduction'_stop, fixInduction_spec, fix_fwd, fix_fwd_eq, fix_stop, fn_apply, get_prodLift, get_prodMap, id_apply, id_comp, image_def, image_inter, image_mono, image_union, lawfulMonad, lift_graph, lift_injective, mem_core, mem_core_res, mem_dom, mem_fix_iff, mem_image, mem_preimage, mem_prodLift, mem_prodMap, mem_res, mem_restrict, mem_toSubtype_iff, preimage_asSubtype, preimage_comp, preimage_eq, preimage_inter, preimage_mono, preimage_subset_core, preimage_subset_dom, preimage_union, preimage_univ, prodLift_apply, prodLift_fst_comp_snd_comp, prodMap_apply, prodMap_comp_comp, prodMap_id_id, pure_defined, res_univ, toSubtype_apply
78
Total106

PFun

Definitions

NameCategoryTheorems
Dom πŸ“–CompOp
19 mathmath: preimage_eq, preimage_asSubtype, core_eq, pure_defined, Dioph.dom_dioph, mem_dom, dom_prodLift, preimage_univ, dom_prodMap, dom_iff_graph, preimage_subset_dom, Dioph.diophPFun_comp1, compl_dom_subset_core, open_dom_of_pcontinuous, dom_coe, dom_toSubtype, dom_comp, dom_mk, dom_eq
asSubtype πŸ“–CompOp
2 mathmath: preimage_asSubtype, asSubtype_eq_of_mem
bind πŸ“–CompOp
1 mathmath: bind_apply
comp πŸ“–CompOp
10 mathmath: id_comp, preimage_comp, prodLift_fst_comp_snd_comp, coe_comp, prodMap_comp_comp, dom_comp, comp_apply, Part.bind_comp, comp_assoc, comp_id
core πŸ“–CompOp
14 mathmath: mem_core, preimage_eq, ptendsto_nhds, core_eq, core_inter, core_restrict, Filter.ptendsto_def, Filter.mem_pmap, compl_dom_subset_core, mem_core_res, preimage_subset_core, core_res, core_mono, core_def
equivSubtype πŸ“–CompOpβ€”
evalOpt πŸ“–CompOpβ€”
fix πŸ“–CompOp
6 mathmath: Partrec.fix, fix_fwd_eq, Partrec.fix_aux, fix_stop, Turing.ToPartrec.Code.fix_eval, mem_fix_iff
fixInduction πŸ“–CompOp
1 mathmath: fixInduction_spec
fixInduction' πŸ“–CompOp
2 mathmath: fixInduction'_stop, fixInduction'_fwd
fn πŸ“–CompOp
2 mathmath: fn_apply, Dioph.diophPFun_comp1
graph πŸ“–CompOp
3 mathmath: lift_graph, Dioph.diophPFun_vec, dom_iff_graph
graph' πŸ“–CompOp
1 mathmath: Filter.ptendsto_iff_rtendsto
id πŸ“–CompOp
5 mathmath: id_comp, id_apply, coe_id, prodMap_id_id, comp_id
image πŸ“–CompOp
6 mathmath: image_mono, image_def, image_inter, image_union, Finset.coe_pimage, mem_image
inhabited πŸ“–CompOpβ€”
map πŸ“–CompOpβ€”
monad πŸ“–CompOp
2 mathmath: lawfulMonad, bind_defined
preimage πŸ“–CompOp
16 mathmath: preimage_eq, preimage_asSubtype, core_eq, coe_preimage, preimage_union, preimage_univ, preimage_comp, preimage_subset_dom, preimage_mono, ptendsto'_nhds, preimage_inter, preimage_subset_core, dom_comp, Preimage_def, Filter.ptendsto'_def, mem_preimage
prodLift πŸ“–CompOp
4 mathmath: dom_prodLift, prodLift_fst_comp_snd_comp, prodLift_apply, mem_prodLift
prodMap πŸ“–CompOp
6 mathmath: prodMap_apply, dom_prodMap, prodLift_fst_comp_snd_comp, mem_prodMap, prodMap_id_id, prodMap_comp_comp
pure πŸ“–CompOp
1 mathmath: pure_defined
ran πŸ“–CompOpβ€”
res πŸ“–CompOp
8 mathmath: Filter.tendsto_iff_ptendsto, res_univ, mem_res, Filter.tendsto_iff_ptendsto_univ, continuousWithinAt_iff_ptendsto_res, Filter.pmap_res, mem_core_res, core_res
restrict πŸ“–CompOp
1 mathmath: mem_restrict
toSubtype πŸ“–CompOp
5 mathmath: pointedToPartialFun_map, mem_toSubtype_iff, toSubtype_apply, dom_toSubtype, dom_toSubtype_apply_iff

Theorems

NameKindAssumesProvesValidatesDepends On
Preimage_def πŸ“–mathematicalβ€”preimage
setOf
Set
Set.instMembership
Part
Part.instMembership
β€”β€”
asSubtype_eq_of_mem πŸ“–mathematicalPart
Part.instMembership
Set
Set.instMembership
Dom
asSubtypeβ€”Part.mem_unique
Part.get_mem
bind_apply πŸ“–mathematicalβ€”bind
Part.bind
β€”β€”
bind_defined πŸ“–mathematicalSet
Set.instHasSubset
Dom
PFun
monad
β€”β€”
coe_comp πŸ“–mathematicalβ€”lift
comp
β€”ext
Part.bind_some
coe_id πŸ“–mathematicalβ€”lift
id
β€”β€”
coe_preimage πŸ“–mathematicalβ€”preimage
lift
Set.preimage
β€”Set.ext
coe_val πŸ“–mathematicalβ€”lift
Part.some
β€”β€”
comp_apply πŸ“–mathematicalβ€”comp
Part.bind
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”ext
Part.bind_comp
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
Part.bind_some
compl_dom_subset_core πŸ“–mathematicalβ€”Set
Set.instHasSubset
Compl.compl
Set.instCompl
Dom
core
β€”mem_dom
core_def πŸ“–mathematicalβ€”core
setOf
β€”β€”
core_eq πŸ“–mathematicalβ€”core
Set
Set.instUnion
preimage
Compl.compl
Set.instCompl
Dom
β€”preimage_eq
Set.inter_union_distrib_right
Set.union_comm
Set.compl_union_self
Set.inter_univ
Set.union_eq_self_of_subset_right
compl_dom_subset_core
core_inter πŸ“–mathematicalβ€”core
Set
Set.instInter
β€”SetRel.core_inter
core_mono πŸ“–mathematicalSet
Set.instHasSubset
coreβ€”SetRel.core_mono
core_res πŸ“–mathematicalβ€”core
res
Set
Set.instUnion
Compl.compl
Set.instCompl
Set.preimage
β€”Set.ext
mem_core_res
instIsEmptyFalse
core_restrict πŸ“–mathematicalβ€”core
lift
Set.preimage
β€”Set.ext
dom_coe πŸ“–mathematicalβ€”Dom
lift
Set.univ
β€”β€”
dom_comp πŸ“–mathematicalβ€”Dom
comp
preimage
β€”Set.ext
dom_eq πŸ“–mathematicalβ€”Dom
setOf
Part
Part.instMembership
β€”Set.ext
mem_dom
dom_iff_graph πŸ“–mathematicalβ€”Set
Set.instMembership
Dom
graph
β€”Part.dom_iff_mem
dom_mk πŸ“–mathematicalβ€”Dom
setOf
β€”β€”
dom_of_mem_fix πŸ“–mathematicalPart
Part.instMembership
fix
Part.Domβ€”Part.mem_assert_iff
Exists.fst
dom_prodLift πŸ“–mathematicalβ€”Dom
prodLift
setOf
Part.Dom
β€”β€”
dom_prodMap πŸ“–mathematicalβ€”Dom
prodMap
setOf
Part.Dom
β€”β€”
dom_toSubtype πŸ“–mathematicalβ€”Dom
toSubtype
setOf
β€”β€”
dom_toSubtype_apply_iff πŸ“–mathematicalβ€”Part.Dom
toSubtype
β€”β€”
ext πŸ“–β€”Part
Part.instMembership
β€”β€”Part.ext
ext' πŸ“–β€”Set
Set.instMembership
Dom
fn
β€”β€”Part.ext'
ext_iff πŸ“–mathematicalβ€”Part
Part.instMembership
β€”ext
fixInduction'_fwd πŸ“–mathematicalPart
Part.instMembership
fix
fixInduction'β€”dom_of_mem_fix
fix_fwd
fixInduction_spec
Part.get_eq_of_mem
fixInduction'_stop πŸ“–mathematicalPart
Part.instMembership
fix
fixInduction'β€”dom_of_mem_fix
fix_fwd
fixInduction_spec
Part.get_eq_of_mem
fixInduction_spec πŸ“–mathematicalPart
Part.instMembership
fix
fixInduction
fix_fwd
β€”fix_fwd
fix_fwd πŸ“–β€”Part
Part.instMembership
fix
β€”β€”fix_fwd_eq
fix_fwd_eq πŸ“–mathematicalPart
Part.instMembership
fixβ€”Part.ext
mem_fix_iff
Part.mem_unique
fix_stop πŸ“–mathematicalPart
Part.instMembership
fixβ€”mem_fix_iff
fn_apply πŸ“–mathematicalβ€”fn
Part.get
β€”β€”
get_prodLift πŸ“–mathematicalPart.Dom
prodLift
Part.getβ€”β€”
get_prodMap πŸ“–mathematicalPart.Dom
prodMap
Part.getβ€”β€”
id_apply πŸ“–mathematicalβ€”id
Part.some
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
image_def πŸ“–mathematicalβ€”image
setOf
Set
Set.instMembership
Part
Part.instMembership
β€”β€”
image_inter πŸ“–mathematicalβ€”Set
Set.instHasSubset
image
Set.instInter
β€”SetRel.image_inter_subset
image_mono πŸ“–mathematicalSet
Set.instHasSubset
imageβ€”SetRel.image_mono
image_union πŸ“–mathematicalβ€”image
Set
Set.instUnion
β€”SetRel.image_union
lawfulMonad πŸ“–mathematicalβ€”PFun
monad
β€”Part.bind_some
Part.bind_assoc
Part.bind_some_eq_map
lift_graph πŸ“–mathematicalβ€”Set
Set.instMembership
graph
lift
β€”β€”
lift_injective πŸ“–mathematicalβ€”PFun
lift
β€”Part.some_injective
mem_core πŸ“–mathematicalβ€”Set
Set.instMembership
core
β€”β€”
mem_core_res πŸ“–mathematicalβ€”Set
Set.instMembership
core
res
β€”β€”
mem_dom πŸ“–mathematicalβ€”Set
Set.instMembership
Dom
Part
Part.instMembership
β€”β€”
mem_fix_iff πŸ“–mathematicalβ€”Part
Part.instMembership
fix
β€”Part.mem_assert_iff
Part.mem_assert
Part.mem_unique
mem_image πŸ“–mathematicalβ€”Set
Set.instMembership
image
Part
Part.instMembership
β€”β€”
mem_preimage πŸ“–mathematicalβ€”Set
Set.instMembership
preimage
Part
Part.instMembership
β€”β€”
mem_prodLift πŸ“–mathematicalβ€”Part
Part.instMembership
prodLift
β€”β€”
mem_prodMap πŸ“–mathematicalβ€”Part
Part.instMembership
prodMap
β€”β€”
mem_res πŸ“–mathematicalβ€”Part
Part.instMembership
res
Set
Set.instMembership
β€”Set.subset_univ
mem_restrict πŸ“–mathematicalSet
Set.instHasSubset
Dom
Part
Part.instMembership
restrict
Set.instMembership
β€”β€”
mem_toSubtype_iff πŸ“–mathematicalβ€”Part
Part.instMembership
toSubtype
β€”toSubtype_apply
Part.mem_mk_iff
exists_subtype_mk_eq_iff
preimage_asSubtype πŸ“–mathematicalβ€”Set.preimage
Set.Elem
Dom
asSubtype
Set
Set.instMembership
preimage
β€”Set.ext
Part.get_mem
Part.mem_unique
preimage_comp πŸ“–mathematicalβ€”preimage
comp
β€”β€”
preimage_eq πŸ“–mathematicalβ€”preimage
Set
Set.instInter
core
Dom
β€”Set.eq_of_subset_of_subset
Set.subset_inter
preimage_subset_core
preimage_subset_dom
Part.get_mem
preimage_inter πŸ“–mathematicalβ€”Set
Set.instHasSubset
preimage
Set.instInter
β€”SetRel.preimage_inter_subset
preimage_mono πŸ“–mathematicalSet
Set.instHasSubset
preimageβ€”SetRel.preimage_mono
preimage_subset_core πŸ“–mathematicalβ€”Set
Set.instHasSubset
preimage
core
β€”Part.mem_unique
preimage_subset_dom πŸ“–mathematicalβ€”Set
Set.instHasSubset
preimage
Dom
β€”Part.dom_iff_mem
preimage_union πŸ“–mathematicalβ€”preimage
Set
Set.instUnion
β€”SetRel.preimage_union
preimage_univ πŸ“–mathematicalβ€”preimage
Set.univ
Dom
β€”Set.ext
prodLift_apply πŸ“–mathematicalβ€”prodLift
Part.Dom
Part.get
β€”β€”
prodLift_fst_comp_snd_comp πŸ“–mathematicalβ€”prodLift
comp
lift
prodMap
β€”ext
Part.bind_some
Part.get.congr_simp
prodMap_apply πŸ“–mathematicalβ€”prodMap
Part.Dom
Part.get
β€”β€”
prodMap_comp_comp πŸ“–mathematicalβ€”prodMap
comp
β€”ext
prodMap_id_id πŸ“–mathematicalβ€”prodMap
id
β€”ext
pure_defined πŸ“–mathematicalβ€”Set
Set.instHasSubset
Dom
pure
β€”Set.subset_univ
res_univ πŸ“–mathematicalβ€”res
Set.univ
lift
β€”β€”
toSubtype_apply πŸ“–mathematicalβ€”toSubtypeβ€”β€”

PFun.Part

Theorems

NameKindAssumesProvesValidatesDepends On
bind_comp πŸ“–mathematicalβ€”Part.bind
PFun.comp
β€”Part.ext

(root)

Definitions

NameCategoryTheorems
PFun πŸ“–CompOp
7 mathmath: PFun.lawfulMonad, Nat.Partrec.Code.instCountableSubtypePFunPartrec, PFun.lift_injective, instIsPreorderPFunNatTuringReducible, TuringEquivalent.equivalence, PFun.bind_defined, recursiveIn_empty_iff_partrec
Β«term_β†’._Β» πŸ“–CompOpβ€”

---

← Back to Index