Documentation Verification Report

M

πŸ“ Source: Mathlib/Data/PFunctor/Multivariate/M.lean

Statistics

MetricCount
Definitionsinhabited, corec, corec', corecContents, corecShape, dest, dest', mk, pathDestLeft, pathDestRight, castDropB, castLastB, inhabitedM, mp, mvfunctorM
15
Theoremsbisim, bisim', bisim_lemma, bisimβ‚€, dest'_eq_dest', dest_corec, dest_corec', dest_eq_dest', dest_map, map_dest
10
Total25

MvPFunctor

Definitions

NameCategoryTheorems
castDropB πŸ“–CompOpβ€”
castLastB πŸ“–CompOpβ€”
inhabitedM πŸ“–CompOpβ€”
mp πŸ“–CompOp
1 mathmath: M.dest_eq_dest'
mvfunctorM πŸ“–CompOp
1 mathmath: M.dest_map

MvPFunctor.M

Definitions

NameCategoryTheorems
corec πŸ“–CompOpβ€”
corec' πŸ“–CompOp
1 mathmath: dest_corec'
corecContents πŸ“–CompOpβ€”
corecShape πŸ“–CompOpβ€”
dest πŸ“–CompOp
6 mathmath: dest_eq_dest', dest_map, dest_corec, map_dest, dest_corec', MvQPF.corecF_eq
dest' πŸ“–CompOp
2 mathmath: dest'_eq_dest', dest_eq_dest'
mk πŸ“–CompOpβ€”
pathDestLeft πŸ“–CompOp
1 mathmath: bisim_lemma
pathDestRight πŸ“–CompOp
1 mathmath: bisim_lemma

Theorems

NameKindAssumesProvesValidatesDepends On
bisim πŸ“–β€”dest
MvPFunctor.A
TypeVec.Arrow
MvPFunctor.B
TypeVec.append1
MvPFunctor.M
TypeVec.splitFun
β€”β€”PFunctor.M.bisim
bisim_lemma
TypeVec.Arrow.ext
bisim' πŸ“–β€”MvFunctor.map
MvPFunctor.Obj
MvPFunctor.instMvFunctorObj
TypeVec.append1
MvPFunctor.M
TypeVec.appendFun
TypeVec.id
dest
β€”β€”bisimβ‚€
Relation.EqvGen.is_equivalence
Quot.factor_mk_eq
TypeVec.appendFun_comp_id
MvFunctor.map_map
MvPFunctor.instLawfulMvFunctorObj
bisim_lemma πŸ“–mathematicaldest
MvPFunctor.A
MvPFunctor.mp
TypeVec.Arrow
MvPFunctor.B
TypeVec.append1
MvPFunctor.M
TypeVec.splitFun
pathDestLeft
pathDestRight
β€”dest_eq_dest'
bisimβ‚€ πŸ“–β€”MvPFunctor.M
MvFunctor.map
MvPFunctor.Obj
MvPFunctor.instMvFunctorObj
TypeVec.append1
TypeVec.appendFun
TypeVec.id
dest
β€”β€”bisim
MvPFunctor.map_eq
TypeVec.split_dropFun_lastFun
Quot.eqvGen_exact
Equivalence.eqvGen_iff
dest'_eq_dest' πŸ“–mathematicalPFunctor.M.dest
MvPFunctor.last
PFunctor.A
dest'β€”β€”
dest_corec πŸ“–mathematicalβ€”dest
MvFunctor.map
MvPFunctor.Obj
MvPFunctor.instMvFunctorObj
TypeVec.append1
MvPFunctor.M
TypeVec.appendFun
TypeVec.id
β€”dest_corec'
MvPFunctor.map_eq
TypeVec.split_dropFun_lastFun
TypeVec.appendFun_comp_splitFun
dest_corec' πŸ“–mathematicalβ€”dest
corec'
MvPFunctor.A
TypeVec.Arrow
MvPFunctor.B
TypeVec.append1
MvPFunctor.M
TypeVec.splitFun
TypeVec.last
β€”β€”
dest_eq_dest' πŸ“–mathematicalPFunctor.M.dest
MvPFunctor.last
PFunctor.A
dest
MvPFunctor.A
MvPFunctor.mp
TypeVec.Arrow
MvPFunctor.B
dest'
β€”dest'_eq_dest'
dest_map πŸ“–mathematicalβ€”dest
MvFunctor.map
MvPFunctor.M
MvPFunctor.mvfunctorM
MvPFunctor.Obj
MvPFunctor.instMvFunctorObj
TypeVec.append1
TypeVec.appendFun
β€”MvPFunctor.map_eq
dest.eq_1
dest'.eq_1
TypeVec.appendFun_comp_splitFun
map_dest πŸ“–mathematicalTypeVec.lastFun
TypeVec.append1
MvPFunctor.M
MvFunctor.map
MvPFunctor.mvfunctorM
TypeVec.drop
TypeVec.dropFun
MvPFunctor.Obj
MvPFunctor.instMvFunctorObj
dest
β€”dest_map
TypeVec.eq_of_drop_last_eq

MvPFunctor.M.Path

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”

---

← Back to Index