Documentation Verification Report

M

πŸ“ Source: Mathlib/Data/PFunctor/Univariate/M.lean

Statistics

MetricCount
DefinitionsM, M, M, M, M, M, M, M, M, M, Agree, AllAgree, CofixA, default, inhabited, children', head', instInhabitedCofixAOfA, sCorec, truncate, M, Agree', sMk, IsBisimulation, IsPath, casesOn, casesOn', children, corec, corec', corecOn, corec₁, dest, head, ichildren, inhabited, iselect, isubtree, mk, MIntl, approx, inhabited, M
43
TheoremsinstSubsingleton, P_corec, agree_children, agree_trivial, approx_eta, cofixA_eq_zero, head_succ', truncate_eq_of_agree, P_mk, head, tail, agree'_refl, agree_iff_agree', approx_mk, bisim, bisim', bisim_equiv, casesOn_mk, casesOn_mk', cases_mk, children_mk, corec_def, corec_unique, default_consistent, dest_corec, dest_mk, eq_of_bisim, ext, ext', ext_aux, head'_eq_head, head_eq_head', head_mk, head_succ, ichildren_mk, isPath_cons, isPath_cons', iselect_cons, iselect_eq_default, iselect_nil, isubtree_cons, mk_dest, mk_inj, nth_of_bisim, truncate_approx, consistent
46
Total89

AddCommMonCat.FilteredColimits

Definitions

NameCategoryTheorems
M πŸ“–CompOpβ€”

AddMonCat.FilteredColimits

Definitions

NameCategoryTheorems
M πŸ“–CompOp
3 mathmath: colimit_add_mk_eq, colimit_zero_eq, colimit_add_mk_eq'

CommMonCat.FilteredColimits

Definitions

NameCategoryTheorems
M πŸ“–CompOpβ€”

CoxeterMatrix

Definitions

NameCategoryTheorems
M πŸ“–CompOp
7 mathmath: CoxeterSystem.simple_mul_simple_pow, isSymm, CoxeterSystem.simple_mul_simple_pow', diagonal, reindex_apply, ext_iff, symmetric

Mathlib.Tactic.Abel

Definitions

NameCategoryTheorems
M πŸ“–CompOpβ€”

Mathlib.Tactic.DepRewrite

Definitions

NameCategoryTheorems
M πŸ“–CompOpβ€”

Mathlib.Tactic.TermCongr

Definitions

NameCategoryTheorems
M πŸ“–CompOpβ€”

ModuleCat.FilteredColimits

Definitions

NameCategoryTheorems
M πŸ“–CompOp
4 mathmath: colimit_smul_mk_eq, colimit_zero_eq, colimit_add_mk_eq', colimit_add_mk_eq

MonCat.FilteredColimits

Definitions

NameCategoryTheorems
M πŸ“–CompOp
3 mathmath: colimit_mul_mk_eq', colimit_one_eq, colimit_mul_mk_eq

MvPFunctor

Definitions

NameCategoryTheorems
M πŸ“–CompOp
5 mathmath: M.dest_map, M.dest_corec, M.dest_corec', MvQPF.Cofix.abs_repr, MvQPF.corecF_eq

PFunctor

Definitions

NameCategoryTheorems
M πŸ“–CompOp
5 mathmath: M.ichildren_mk, QPF.corecF_eq, M.iselect_eq_default, M.corec_def, M.dest_corec
MIntl πŸ“–CompDataβ€”

PFunctor.Approx

Definitions

NameCategoryTheorems
Agree πŸ“–CompData
4 mathmath: P_corec, PFunctor.M.agree_iff_agree', agree_trivial, PFunctor.M.default_consistent
AllAgree πŸ“–MathDef
2 mathmath: PFunctor.M.Approx.P_mk, PFunctor.MIntl.consistent
CofixA πŸ“–CompData
2 mathmath: CofixA.instSubsingleton, PFunctor.M.default_consistent
children' πŸ“–CompOp
2 mathmath: agree_children, approx_eta
head' πŸ“–CompOp
5 mathmath: PFunctor.M.head_eq_head', PFunctor.M.head'_eq_head, head_succ', PFunctor.M.head_succ, approx_eta
instInhabitedCofixAOfA πŸ“–CompOp
1 mathmath: PFunctor.M.default_consistent
sCorec πŸ“–CompOpβ€”
truncate πŸ“–CompOp
2 mathmath: PFunctor.M.truncate_approx, truncate_eq_of_agree

Theorems

NameKindAssumesProvesValidatesDepends On
P_corec πŸ“–mathematicalβ€”Agreeβ€”β€”
agree_children πŸ“–mathematicalPFunctor.B
head'
Agree
children'β€”β€”
agree_trivial πŸ“–mathematicalβ€”Agreeβ€”β€”
approx_eta πŸ“–mathematicalβ€”CofixA.intro
head'
children'
β€”β€”
cofixA_eq_zero πŸ“–β€”β€”β€”β€”β€”
head_succ' πŸ“–mathematicalAllAgreehead'β€”β€”
truncate_eq_of_agree πŸ“–mathematicalAgreetruncateβ€”β€”

PFunctor.Approx.CofixA

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instSubsingleton πŸ“–mathematicalβ€”PFunctor.Approx.CofixAβ€”β€”

PFunctor.Approx.Path

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”

PFunctor.M

Definitions

NameCategoryTheorems
Agree' πŸ“–CompData
2 mathmath: agree_iff_agree', agree'_refl
IsBisimulation πŸ“–CompDataβ€”
IsPath πŸ“–CompDataβ€”
casesOn πŸ“–CompOpβ€”
casesOn' πŸ“–CompOp
1 mathmath: casesOn_mk'
children πŸ“–CompOp
1 mathmath: children_mk
corec πŸ“–CompOpβ€”
corec' πŸ“–CompOpβ€”
corecOn πŸ“–CompOpβ€”
corec₁ πŸ“–CompOpβ€”
dest πŸ“–CompOp
4 mathmath: dest_mk, QPF.corecF_eq, dest_corec, mk_dest
head πŸ“–CompOp
5 mathmath: head_mk, head_eq_head', head'_eq_head, iselect_eq_default, children_mk
ichildren πŸ“–CompOp
1 mathmath: ichildren_mk
inhabited πŸ“–CompOpβ€”
iselect πŸ“–CompOp
4 mathmath: iselect_nil, iselect_eq_default, iselect_cons, nth_of_bisim
isubtree πŸ“–CompOp
2 mathmath: isubtree_cons, nth_of_bisim
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
agree'_refl πŸ“–mathematicalβ€”Agree'β€”β€”
agree_iff_agree' πŸ“–mathematicalβ€”PFunctor.Approx.Agree
PFunctor.MIntl.approx
Agree'
β€”β€”
approx_mk πŸ“–mathematicalβ€”PFunctor.MIntl.approx
PFunctor.A
PFunctor.Approx.CofixA.intro
β€”β€”
bisim πŸ“–β€”dest
PFunctor.A
β€”β€”eq_of_bisim
bisim' πŸ“–β€”dest
PFunctor.A
β€”β€”bisim
bisim_equiv πŸ“–β€”dest
PFunctor.A
β€”β€”bisim'
casesOn_mk πŸ“–β€”β€”β€”β€”β€”
casesOn_mk' πŸ“–mathematicalβ€”casesOn'
PFunctor.A
β€”β€”
cases_mk πŸ“–mathematicalβ€”casesβ€”β€”
children_mk πŸ“–mathematicalβ€”children
PFunctor.A
PFunctor.B
head
β€”ext'
corec_def πŸ“–mathematicalβ€”PFunctor.map
PFunctor.M
β€”β€”
corec_unique πŸ“–β€”dest
PFunctor.map
PFunctor.M
β€”β€”bisim'
PFunctor.map_eq
default_consistent πŸ“–mathematicalβ€”PFunctor.Approx.Agree
PFunctor.Approx.CofixA
PFunctor.Approx.instInhabitedCofixAOfA
β€”β€”
dest_corec πŸ“–mathematicalβ€”dest
PFunctor.map
PFunctor.M
β€”corec_def
dest_mk πŸ“–mathematicalβ€”destβ€”β€”
eq_of_bisim πŸ“–β€”IsBisimulationβ€”β€”ext
nth_of_bisim
iselect_eq_default
ext πŸ“–β€”iselectβ€”β€”ext'
PFunctor.Approx.CofixA.instSubsingleton
ext_aux
agree_iff_agree'
PFunctor.MIntl.consistent
ext' πŸ“–β€”PFunctor.MIntl.approxβ€”β€”β€”
ext_aux πŸ“–mathematicalAgree'
iselect
PFunctor.MIntl.approxβ€”PFunctor.Approx.CofixA.instSubsingleton
iselect_cons
head'_eq_head πŸ“–mathematicalβ€”PFunctor.Approx.head'
PFunctor.MIntl.approx
head
β€”PFunctor.Approx.head_succ'
head_eq_head' πŸ“–mathematicalβ€”head
PFunctor.Approx.head'
PFunctor.MIntl.approx
β€”PFunctor.Approx.head_succ'
head_mk πŸ“–mathematicalβ€”head
PFunctor.A
β€”β€”
head_succ πŸ“–mathematicalβ€”PFunctor.Approx.head'
PFunctor.MIntl.approx
β€”PFunctor.Approx.head_succ'
PFunctor.MIntl.consistent
ichildren_mk πŸ“–mathematicalβ€”ichildren
PFunctor.Obj.iget
PFunctor.M
β€”β€”
isPath_cons πŸ“–β€”IsPath
PFunctor.Idx
PFunctor.A
PFunctor.B
β€”β€”β€”
isPath_cons' πŸ“–β€”IsPath
PFunctor.Idx
PFunctor.A
PFunctor.B
β€”β€”β€”
iselect_cons πŸ“–mathematicalβ€”iselect
PFunctor.Idx
PFunctor.A
PFunctor.B
β€”isubtree_cons
iselect_eq_default πŸ“–mathematicalIsPathiselect
head
PFunctor.M
β€”casesOn_mk'
iselect_nil πŸ“–mathematicalβ€”iselect
PFunctor.Idx
PFunctor.A
β€”β€”
isubtree_cons πŸ“–mathematicalβ€”isubtree
PFunctor.Idx
PFunctor.A
PFunctor.B
β€”casesOn_mk'
mk_dest πŸ“–mathematicalβ€”destβ€”ext'
PFunctor.Approx.CofixA.instSubsingleton
PFunctor.Approx.head_succ'
PFunctor.MIntl.consistent
PFunctor.Approx.head'.eq_1
mk_inj πŸ“–β€”β€”β€”β€”β€”
nth_of_bisim πŸ“–mathematicalIsBisimulation
IsPath
iselect
isubtree
PFunctor.A
β€”IsBisimulation.tail
isubtree_cons
isPath_cons'
IsBisimulation.head
isPath_cons
truncate_approx πŸ“–mathematicalβ€”PFunctor.Approx.truncate
PFunctor.MIntl.approx
β€”PFunctor.Approx.truncate_eq_of_agree
PFunctor.MIntl.consistent

PFunctor.M.Approx

Definitions

NameCategoryTheorems
sMk πŸ“–CompOp
1 mathmath: P_mk

Theorems

NameKindAssumesProvesValidatesDepends On
P_mk πŸ“–mathematicalβ€”PFunctor.Approx.AllAgree
sMk
β€”PFunctor.MIntl.consistent

PFunctor.M.IsBisimulation

Theorems

NameKindAssumesProvesValidatesDepends On
head πŸ“–β€”PFunctor.M.IsBisimulation
PFunctor.A
β€”β€”β€”
tail πŸ“–β€”PFunctor.M.IsBisimulation
PFunctor.A
β€”β€”β€”

PFunctor.MIntl

Definitions

NameCategoryTheorems
approx πŸ“–CompOp
8 mathmath: PFunctor.M.head_eq_head', PFunctor.M.truncate_approx, PFunctor.M.head'_eq_head, consistent, PFunctor.M.agree_iff_agree', PFunctor.M.approx_mk, PFunctor.M.ext_aux, PFunctor.M.head_succ
inhabited πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
consistent πŸ“–mathematicalβ€”PFunctor.Approx.AllAgree
approx
β€”β€”

SingularManifold

Definitions

NameCategoryTheorems
M πŸ“–CompOp
14 mathmath: empty_M, instIsEmptyMEmpty, isManifold, sum_f, boundaryless, instCompactSpaceM, instBoundarylessManifoldRealM, compactSpace, map_f, map_comp, hf, map_M, instIsManifoldRealM, sum_M

---

← Back to Index