Documentation Verification Report

Defs

📁 Source: Mathlib/Data/PNat/Defs.lean

Statistics

MetricCount
DefinitionssuccPNat, toPNat, toPNat', div, divExact, instInhabited, instWellFoundedRelation, modDiv, modDivAux, natPred, strongInductionOn, instLinearOrderPNat, instOfNatPNatOfNeZeroNat, instOnePNat
14
TheoremscanLiftPNat, canLiftPNat, natPred_succPNat, succPNat_coe, toPNat'_coe, toPNat'_zero, pnat, coe_eq_one_iff, coe_injective, coe_le_coe, coe_lt_coe, coe_toPNat', div_coe, eq, mk_coe, mk_le_mk, mk_lt_mk, mk_one, mod_coe, natPred_eq_pred, ne_zero, not_lt_one, one_coe, one_le, pos, succPNat_natPred, toPNat'_coe
27
Total41

Int

Theorems

NameKindAssumesProvesValidatesDepends On
canLiftPNat 📖mathematicalCanLift
PNat
PNat.val
Nat.toPNat'_coe
LT.lt.ne'
LT.lt.le

Nat

Definitions

NameCategoryTheorems
succPNat 📖CompOp
19 mathmath: OrderIso.pnatIsoNat_symm_apply, ONote.ofNat_succ, succPNat_mono, succPNat_le_succPNat, PNat.gcd_props, PNat.gcd_det_eq, Mathlib.Tactic.Ring.instCSLiftValPNatNatSuccPNatHAddOfNat, succPNat_coe, PNat.succPNat_natPred, succPNat_injective, Equiv.pnatEquivNat_symm_apply, natPred_succPNat, succPNat_lt_succPNat, PNat.gcd_rel_left', succPNat_strictMono, PNat.add_one, PNat.gcd_rel_right', succPNat_inj, PNat.lt_succ_self
toPNat 📖CompOp
1 mathmath: Mathlib.Tactic.Ring.instCSLiftValPNatNatToPNat
toPNat' 📖CompOp
6 mathmath: toPNat'_coe, toPNat'_zero, AddChar.val_mem_rootsOfUnity, PNat.toPNat'_coe, PNat.coe_toPNat', Mathlib.Tactic.Ring.instCSLiftValPNatNatToPNat'HAddPredOfNat

Theorems

NameKindAssumesProvesValidatesDepends On
canLiftPNat 📖mathematicalCanLift
PNat
PNat.val
PNat.toPNat'_coe
natPred_succPNat 📖mathematicalPNat.natPred
succPNat
succPNat_coe 📖mathematicalPNat.val
succPNat
toPNat'_coe 📖mathematicalPNat.val
toPNat'
toPNat'_zero 📖mathematicaltoPNat'
PNat
instOfNatPNatOfNeZeroNat

NeZero

Theorems

NameKindAssumesProvesValidatesDepends On
pnat 📖mathematicalPNat.valPNat.ne_zero

PNat

Definitions

NameCategoryTheorems
div 📖CompOp
6 mathmath: Mathlib.Tactic.Ring.instCSLiftValPNatNatDivExactHAddDivOfNat, mod_add_div, mod_add_div', div_add_mod, div_coe, div_add_mod'
divExact 📖CompOp
2 mathmath: Mathlib.Tactic.Ring.instCSLiftValPNatNatDivExactHAddDivOfNat, mul_div_exact
instInhabited 📖CompOp
instWellFoundedRelation 📖CompOp
modDiv 📖CompOp
modDivAux 📖CompOp
1 mathmath: modDivAux_spec
natPred 📖CompOp
13 mathmath: natPred_injective, Equiv.pnatEquivNat_apply, natPred_monotone, succPNat_natPred, Nat.natPred_succPNat, natPred_add_one, one_add_natPred, OrderIso.pnatIsoNat_apply, natPred_inj, natPred_strictMono, natPred_lt_natPred, natPred_le_natPred, natPred_eq_pred
strongInductionOn 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eq_one_iff 📖mathematicalval
PNat
instOfNatPNatOfNeZeroNat
Subtype.coe_injective
one_coe
coe_injective 📖mathematicalPNat
val
Subtype.coe_injective
coe_le_coe 📖mathematicalval
PNat
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
instLinearOrderPNat
coe_lt_coe 📖mathematicalval
PNat
Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
instLinearOrderPNat
coe_toPNat' 📖mathematicalNat.toPNat'
val
eq
toPNat'_coe
pos
div_coe 📖mathematicaldiv
val
eq 📖val
mk_coe 📖mathematicalval
mk_le_mk 📖
mk_lt_mk 📖
mk_one 📖mathematicalPNat
instOfNatPNatOfNeZeroNat
mod_coe 📖mathematicalval
mod
natPred_eq_pred 📖mathematicalnatPred
ne_zero 📖LT.lt.ne'
not_lt_one 📖mathematicalPNat
Preorder.toLT
PartialOrder.toPreorder
LinearOrder.toPartialOrder
instLinearOrderPNat
instOfNatPNatOfNeZeroNat
not_lt_of_ge
one_le
one_coe 📖mathematicalval
PNat
instOfNatPNatOfNeZeroNat
one_le 📖mathematicalPNat
Preorder.toLE
PartialOrder.toPreorder
LinearOrder.toPartialOrder
instLinearOrderPNat
instOfNatPNatOfNeZeroNat
pos 📖mathematicalval
succPNat_natPred 📖mathematicalNat.succPNat
natPred
toPNat'_coe 📖mathematicalval
Nat.toPNat'

(root)

Definitions

NameCategoryTheorems
instLinearOrderPNat 📖CompOp
75 mathmath: PNat.bot_eq_one, PNat.addLeftMono, OrderIso.pnatIsoNat_symm_apply, PNat.map_subtype_embedding_Ico, Nat.succPNat_mono, PNat.find_le, Nat.succPNat_le_succPNat, PNat.Icc_eq_finset_subtype, PNat.Ioo_eq_finset_subtype, PNat.instIsOrderedCancelMonoid, PNat.le_of_dvd, PNat.card_Icc, PNat.tendsto_comp_val_iff, PNat.lt_add_right, PNat.find_mono, ADEInequality.lt_six, PNat.not_lt_one, PNat.Ico_eq_finset_subtype, PNat.sub_coe, PNat.addLeftReflectLT, PNat.natPred_monotone, PNat.ofNat_lt_ofNat, tendsto_PNat_val_atTop_atTop, PNat.coe_le_coe, PNat.find_le_iff, PNat.card_fintype_uIcc, PNat.map_subtype_embedding_Icc, PNat.uIcc_eq_finset_subtype, PNat.ofNat_le_ofNat, PNat.equivNonZeroDivisorsNat_symm_apply_coe, Nat.succPNat_lt_succPNat, Nat.succPNat_strictMono, PNat.add_one_le_iff, PNat.card_Ico, PNat.map_subtype_embedding_Ioo, PNat.Ioc_eq_finset_subtype, PNat.find_lt_iff, PNat.succ_eq_add_one, PNat.map_subtype_embedding_uIcc, LucasLehmer.two_lt_q, PNat.addLeftReflectLE, PNat.card_fintype_Ioo, PNat.Prime.one_lt, PNat.card_uIcc, OrderIso.pnatIsoNat_apply, PNat.instWellFoundedLT, PNat.lt_add_left, PNat.sub_le, PNat.card_Ioo, PNat.equivNonZeroDivisorsNat_apply_coe, PNat.card_fintype_Ioc, PNat.card_fintype_Ico, PNat.find_min', Complex.UnitDisc.tendsto_pow_atTop_nhds_zero, PNat.natPred_strictMono, PNat.natPred_lt_natPred, PNat.instNoMaxOrder, PNat.lt_add_one_iff, PNat.card_Ioc, PNat.natPred_le_natPred, EisensteinSeries.tendsto_tsum_one_div_linear_sub_succ_eq, PNat.lt_find_iff, Mathlib.Tactic.PNatToNat.coe_le_coe, PNat.le_one_iff, PNat.coe_lt_coe, Mathlib.Tactic.PNatToNat.coe_lt_coe, PNat.map_subtype_embedding_Ioc, PNat.one_le, PNat.card_fintype_Icc, PNat.one_le_find, PNat.mod_le, PNat.addLeftStrictMono, PNat.le_find_iff, PNat.lt_succ_self, tendsto_zero_geometric_tsum_pnat
instOfNatPNatOfNeZeroNat 📖CompOp
50 mathmath: PNat.bot_eq_one, PNat.mk_one, PNat.coe_eq_one_iff, Rat.pnatDen_one, PNat.not_lt_one, PNat.Prime.not_dvd_one, PNat.one_coprime, PNat.dvd_one_iff, PNat.le_sub_one_of_lt, PNat.not_prime_one, Nat.toPNat'_zero, PNat.one_coe, PNat.fact_prime_two, PNat.add_one_le_iff, PNat.one_gcd, PNat.prime_five, PNat.recOn_succ, divisorsAntidiagonalFactors_one, ppow_one, PNat.prime_two, PNat.succ_eq_add_one, LucasLehmer.two_lt_q, PNat.mk_ofNat, PNat.Prime.one_lt, ADEInequality.admissible_E'4, PNat.fact_prime_five, PNat.dvd_prime, PNat.coprime_one, PNat.gcd_one, PNat.find_eq_one, PNat.factorMultiset_one, PNat.add_one, ADEInequality.admissible_E'5, PNat.fact_prime_three, PrimeMultiset.prod_zero, PNat.lt_add_one_iff, ADEInequality.lt_three, ONote.scale_eq_mul, PNat.le_one_iff, PNat.one_le, PNat.isCoprime_iff, PNat.one_lt_of_lt, PNat.one_le_find, Rat.pnatDen_zero, PNatPowAssoc.ppow_one, ADEInequality.admissible_E'3, PNat.prime_three, PNat.recOn_one, PNat.exists_eq_succ_of_ne_one, EqualCharZero.pnatCast_one
instOnePNat 📖CompOp
1 mathmath: PrimeMultiset.prod_ofPNatList

---

← Back to Index