val 📖 | CompOp | 149 mathmath: mod_coe, LucasLehmer.mersenne_coe_X, gcd_rel_left, EisensteinSeries.hasSum_e2Summand_symmetricIcc, map_subtype_embedding_Ico, tprod_int_eq_zero_mul_tprod_pnat_sq, instFactPrimeValOfPrime, ADEInequality.sumInv_pqr, lcm_coe, modDivAux_spec, Icc_eq_finset_subtype, Function.directed_ptsOfPeriod_pnat, Nat.toPNat'_coe, Ioo_eq_finset_subtype, gcd_props, Int.canLiftPNat, tsum_int_eq_zero_add_tsum_pnat, dist_eq, coeAddHom_apply, PrimeMultiset.prod_ofNatList, coe_eq_one_iff, Nat.Primes.coe_pnat_nat, Rat.pnatDen_eq_iff_den_eq, multipliable_pnat_iff_multipliable_succ, Function.iUnion_pnat_ptsOfPeriod, Filter.exists_lt_of_limsup_le, card_Icc, sigmaAntidiagonalEquivProd_symm_apply_snd, gcd_rel_right, tendsto_comp_val_iff, gcd_coe, coprime_coe, coe_injective, Mathlib.Tactic.PNatToNat.sub_coe, tprod_pnat_eq_tprod_succ, Complex.UnitDisc.coe_pow, Ico_eq_finset_subtype, Nat.canLiftPNat, mod_add_div, sub_coe, tsum_zero_pnat_eq_tsum_nat, tsum_pow_div_one_sub_eq_tsum_sigma, tendsto_PNat_val_atTop_atTop, tsum_pnat_eq_tsum_succ, tprod_zero_pnat_eq_tprod_nat, coe_le_coe, Nat.succPNat_coe, EisensteinSeries.hasSum_e2Summand_symmetricIco, card_fintype_uIcc, EisensteinSeries.q_expansion_riemannZeta, map_subtype_embedding_Icc, summable_prod_mul_pow, mod_add_div', uIcc_eq_finset_subtype, LucasLehmer.ω_pow_eq_one, Filter.exists_lt_of_le_liminf, DivisibleHull.mk_eq_mk_iff_smul_eq_smul, gcdB'_coe, DivisibleHull.mk_le_mk, gcd_rel_left', dist_coe, tsum_int_eq_zero_add_two_mul_tsum_pnat, summable_pnat_iff_summable_succ, smoothingFun_le, one_coe, AddChar.val_mem_rootsOfUnity, add_coe, card_Ico, map_subtype_embedding_Ioo, natPred_add_one, cot_series_rep, ONote.repr_opow_aux₁, dvd_iff, Ioc_eq_finset_subtype, Coprime.pow, AddChar.PrimitiveAddChar.prim, EisensteinSeries.qExpansion_identity_pnat, EqualCharZero.pnatCast_eq_natCast, ppow_eq_pow, FiniteField.card, map_subtype_embedding_uIcc, NeZero.pnat, one_add_natPred, LucasLehmer.ωUnit_coe, card_fintype_Ioo, val_ofNat, toPNat'_coe, PrimeMultiset.mem_ofNatMultiset, card_uIcc, PrimeMultiset.coePNat_nat, EisensteinSeries.q_expansion_bernoulli, pos, tsum_prod_pow_eq_tsum_sigma, LucasLehmer.order_ω, div_add_mod, div_coe, sigmaAntidiagonalEquivProd_symm_apply_fst, pnat_multipliable_iff_multipliable_succ, card_Ioo, coe_toPNat', equivNonZeroDivisorsNat_apply_coe, DivisibleHull.mk_add_mk, card_fintype_Ioc, card_fintype_Ico, zero_mem_lowerBounds_smoothingSeminormSeq_range, mul_coe, add_one, Mathlib.Tactic.PNatToNat.coe_inj, smoothingSeminormSeq_bddBelow, pow_coe, DivisibleHull.mk_lt_mk, LucasLehmer.ω_pow_eq_neg_one, gcd_rel_right', tprod_int_eq_zero_mul_tprod_pnat, EisensteinSeries.G2_eq_tsum_cexp, Rat.coe_pnatDen, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, div_add_mod', coeNat_factorMultiset, card_Ioc, EisensteinSeries.tendsto_tsum_one_div_linear_sub_succ_eq, ONote.repr_opow_aux₂, FiniteField.card', LucasLehmer.ω_pow_formula, gcdA'_coe, PrimeMultiset.prod_ofNatMultiset, Mathlib.Tactic.PNatToNat.coe_le_coe, coe_lt_coe, Mathlib.Tactic.PNatToNat.coe_lt_coe, Finset.PNat.coe_prod, XgcdType.start_v, map_subtype_embedding_Ioc, DivisibleHull.mk_eq_mk, coe_inj, divisorsAntidiagonalFactors_eq, card_fintype_Icc, isCoprime_iff, summable_pow_mul_cexp, PrimeMultiset.mem_ofNatList, EqualCharZero.PNat.isUnit_natCast, PrimeMultiset.coe_prod, mk_coe, isUniformEmbedding_coe, multipliable_pnat_iff_multipliable_nat, LucasLehmer.order_ineq, lt_succ_self, tendsto_zero_geometric_tsum_pnat, summable_pnat_iff_summable_nat, coe_coeMonoidHom
|