Documentation Verification Report

Prime

📁 Source: Mathlib/Data/PNat/Prime.lean

Statistics

MetricCount
DefinitionscoePNat, toPNat, Prime, gcd, lcm
5
Theoremscoe_pnat_inj, coe_pnat_injective, coe_pnat_nat, coprime_dvd_left, factor_eq_gcd_left, factor_eq_gcd_left_right, factor_eq_gcd_right, factor_eq_gcd_right_right, gcd_mul, gcd_mul_left_cancel, gcd_mul_left_cancel_right, gcd_mul_right_cancel, gcd_mul_right_cancel_right, mul, mul_right, pow, ne_one, not_dvd_one, one_lt, coprime_coe, coprime_one, dvd_gcd, dvd_lcm_left, dvd_lcm_right, dvd_prime, eq_one_of_lt_two, exists_prime_and_dvd, fact_prime_five, fact_prime_three, fact_prime_two, gcd_coe, gcd_comm, gcd_dvd_left, gcd_dvd_right, gcd_eq_left, gcd_eq_left_iff_dvd, gcd_eq_right_iff_dvd, gcd_mul_lcm, gcd_one, instFactPrimeValOfPrime, lcm_coe, lcm_dvd, not_prime_one, one_coprime, one_gcd, prime_five, prime_three, prime_two
48
Total53

Nat.Primes

Definitions

NameCategoryTheorems
coePNat 📖CompOp
toPNat 📖CompOp
7 mathmath: coe_pnat_injective, coe_pnat_nat, PNat.count_factorMultiset, PrimeMultiset.prod_ofPrime, PNat.factorMultiset_ofPrime, PrimeMultiset.coePNat_ofPrime, coe_pnat_inj

Theorems

NameKindAssumesProvesValidatesDepends On
coe_pnat_inj 📖mathematicaltoPNatcoe_pnat_injective
coe_pnat_injective 📖mathematicalNat.Primes
PNat
toPNat
coe_pnat_nat 📖mathematicalPNat.val
toPNat
Nat.Prime

PNat

Definitions

NameCategoryTheorems
Prime 📖MathDef
10 mathmath: not_prime_one, fact_prime_two, prime_five, exists_prime_and_dvd, prime_two, fact_prime_five, fact_prime_three, mem_factorMultiset, PrimeMultiset.coePNat_prime, prime_three
gcd 📖CompOp
27 mathmath: gcd_rel_left, gcd_b_eq, gcd_rel_right, gcd_coe, Coprime.factor_eq_gcd_right_right, Coprime.gcd_mul_right_cancel, gcd_dvd_right, gcd_eq_right_iff_dvd, factorMultiset_gcd, Coprime.gcd_mul_right_cancel_right, Coprime.gcd_mul_left_cancel, one_gcd, dvd_gcd, Coprime.factor_eq_gcd_right, PrimeMultiset.prod_inf, gcd_mul_lcm, Coprime.gcd_mul, gcd_dvd_left, gcd_comm, gcd_one, Coprime.factor_eq_gcd_left, gcd_eq, Coprime.factor_eq_gcd_left_right, Coprime.gcd_mul_left_cancel_right, gcd_eq_left, gcd_a_eq, gcd_eq_left_iff_dvd
lcm 📖CompOp
7 mathmath: lcm_dvd, lcm_coe, dvd_lcm_right, PrimeMultiset.prod_sup, gcd_mul_lcm, dvd_lcm_left, factorMultiset_lcm

Theorems

NameKindAssumesProvesValidatesDepends On
coprime_coe 📖mathematicalval
Coprime
coprime_one 📖mathematicalCoprime
PNat
instOfNatPNatOfNeZeroNat
Coprime.symm
one_coprime
dvd_gcd 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
gcddvd_iff
dvd_lcm_left 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
lcm
dvd_iff
dvd_lcm_right 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
lcm
dvd_iff
dvd_prime 📖mathematicalPrimePNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
instOfNatPNatOfNeZeroNat
dvd_iff
Nat.dvd_prime
eq_one_of_lt_two 📖PNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instOfNatPNatOfNeZeroNat
le_antisymm
lt_add_one_iff
one_le
exists_prime_and_dvd 📖mathematicalPrime
PNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
Nat.exists_prime_and_dvd
coe_eq_one_iff
Nat.Prime.pos
dvd_iff
fact_prime_five 📖mathematicalFact
Prime
PNat
instOfNatPNatOfNeZeroNat
prime_five
fact_prime_three 📖mathematicalFact
Prime
PNat
instOfNatPNatOfNeZeroNat
prime_three
fact_prime_two 📖mathematicalFact
Prime
PNat
instOfNatPNatOfNeZeroNat
prime_two
gcd_coe 📖mathematicalval
gcd
gcd_comm 📖mathematicalgcdeq
gcd_dvd_left 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
gcd
dvd_iff
gcd_dvd_right 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
gcd
dvd_iff
gcd_eq_left 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
gcdgcd_eq_left_iff_dvd
gcd_eq_left_iff_dvd 📖mathematicalgcd
PNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
dvd_iff
gcd_eq_right_iff_dvd 📖mathematicalgcd
PNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
gcd_comm
gcd_eq_left_iff_dvd
gcd_mul_lcm 📖mathematicalPNat
instMulPNat
gcd
lcm
gcd_one 📖mathematicalgcd
PNat
instOfNatPNatOfNeZeroNat
gcd_comm
one_gcd
instFactPrimeValOfPrime 📖mathematicalFact
Nat.Prime
val
lcm_coe 📖mathematicalval
lcm
lcm_dvd 📖mathematicalPNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
instCommMonoid
lcmdvd_iff
not_prime_one 📖mathematicalPrime
PNat
instOfNatPNatOfNeZeroNat
Nat.not_prime_one
one_coprime 📖mathematicalCoprime
PNat
instOfNatPNatOfNeZeroNat
one_gcd
one_gcd 📖mathematicalgcd
PNat
instOfNatPNatOfNeZeroNat
gcd_eq_left_iff_dvd
one_dvd
prime_five 📖mathematicalPrime
PNat
instOfNatPNatOfNeZeroNat
Nat.prime_five
prime_three 📖mathematicalPrime
PNat
instOfNatPNatOfNeZeroNat
Nat.prime_three
prime_two 📖mathematicalPrime
PNat
instOfNatPNatOfNeZeroNat
Nat.prime_two

PNat.Coprime

Theorems

NameKindAssumesProvesValidatesDepends On
coprime_dvd_left 📖PNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
PNat.instCommMonoid
PNat.Coprime
PNat.dvd_iff
PNat.coprime_coe
factor_eq_gcd_left 📖mathematicalPNat.Coprime
PNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
PNat.instCommMonoid
PNat.gcd
instMulPNat
PNat.gcd_eq_left_iff_dvd
gcd_mul_right_cancel
coprime_dvd_left
symm
factor_eq_gcd_left_right 📖mathematicalPNat.Coprime
PNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
PNat.instCommMonoid
PNat.gcd
instMulPNat
PNat.gcd_comm
factor_eq_gcd_left
factor_eq_gcd_right 📖mathematicalPNat.Coprime
PNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
PNat.instCommMonoid
PNat.gcd
instMulPNat
mul_comm
factor_eq_gcd_left
factor_eq_gcd_right_right 📖mathematicalPNat.Coprime
PNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
PNat.instCommMonoid
PNat.gcd
instMulPNat
PNat.gcd_comm
factor_eq_gcd_right
gcd_mul 📖mathematicalPNat.CoprimePNat.gcd
PNat
instMulPNat
PNat.eq
PNat.coprime_coe
gcd_mul_left_cancel 📖mathematicalPNat.CoprimePNat.gcd
PNat
instMulPNat
PNat.eq
gcd_mul_left_cancel_right 📖mathematicalPNat.CoprimePNat.gcd
PNat
instMulPNat
PNat.gcd_comm
gcd_mul_left_cancel
gcd_mul_right_cancel 📖mathematicalPNat.CoprimePNat.gcd
PNat
instMulPNat
mul_comm
gcd_mul_left_cancel
gcd_mul_right_cancel_right 📖mathematicalPNat.CoprimePNat.gcd
PNat
instMulPNat
mul_comm
gcd_mul_left_cancel_right
mul 📖mathematicalPNat.CoprimePNat
instMulPNat
PNat.coprime_coe
PNat.mul_coe
mul_right 📖mathematicalPNat.CoprimePNat
instMulPNat
PNat.coprime_coe
PNat.mul_coe
pow 📖mathematicalPNat.CoprimeMonoid.toNatPow
Nat.instMonoid
PNat.val
PNat.coprime_coe

PNat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
ne_one 📖PNat.PrimeNat.Prime.ne_one
PNat.coe_eq_one_iff
not_dvd_one 📖mathematicalPNat.PrimePNat
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
PNat.instCommMonoid
instOfNatPNatOfNeZeroNat
PNat.dvd_iff
Nat.Prime.not_dvd_one
one_lt 📖mathematicalPNat.PrimePNat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderPNat
instOfNatPNatOfNeZeroNat
Nat.Prime.one_lt

---

← Back to Index