Documentation Verification Report

Xgcd

📁 Source: Mathlib/Data/PNat/Xgcd.lean

Statistics

MetricCount
DefinitionsXgcdType, IsReduced, IsReduced', IsSpecial, IsSpecial', a, ap, b, bp, finish, flip, instRepr, instSizeOf, mk', q, qp, r, reduce, start, step, succ₂, v, vp, w, wp, x, y, z, zp, gcdA', gcdB', gcdD, gcdW, gcdX, gcdY, gcdZ, instInhabitedXgcdType, default, xgcd
39
Theoremsfinish_isReduced, finish_isSpecial, finish_v, flip_a, flip_b, flip_isReduced, flip_isSpecial, flip_v, flip_w, flip_x, flip_y, flip_z, isReduced_iff, isSpecial_iff, qp_eq, reduce_a, reduce_b, reduce_isReduced, reduce_isReduced', reduce_isSpecial, reduce_isSpecial', reduce_v, rq_eq, start_isSpecial, start_v, step_isSpecial, step_v, step_wf, v_eq_succ_vp, gcdA'_coe, gcdB'_coe, gcd_a_eq, gcd_b_eq, gcd_det_eq, gcd_eq, gcd_props, gcd_rel_left, gcd_rel_left', gcd_rel_right, gcd_rel_right'
40
Total79

PNat

Definitions

NameCategoryTheorems
XgcdType 📖CompData
1 mathmath: XgcdType.step_wf
gcdA' 📖CompOp
5 mathmath: gcd_props, gcd_rel_left', gcd_rel_right', gcdA'_coe, gcd_a_eq
gcdB' 📖CompOp
5 mathmath: gcd_b_eq, gcd_props, gcdB'_coe, gcd_rel_left', gcd_rel_right'
gcdD 📖CompOp
2 mathmath: gcd_props, gcd_eq
gcdW 📖CompOp
5 mathmath: gcd_props, gcd_rel_right, gcd_det_eq, gcd_rel_right', gcdA'_coe
gcdX 📖CompOp
5 mathmath: gcd_rel_left, gcd_props, gcd_det_eq, gcd_rel_left', gcdA'_coe
gcdY 📖CompOp
5 mathmath: gcd_props, gcd_rel_right, gcd_det_eq, gcdB'_coe, gcd_rel_right'
gcdZ 📖CompOp
5 mathmath: gcd_rel_left, gcd_props, gcd_det_eq, gcdB'_coe, gcd_rel_left'
instInhabitedXgcdType 📖CompOp
xgcd 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
gcdA'_coe 📖mathematicalval
gcdA'
gcdW
gcdX
add_right_comm
gcdB'_coe 📖mathematicalval
gcdB'
gcdY
gcdZ
add_assoc
gcd_a_eq 📖mathematicalPNat
instMulPNat
gcdA'
gcd
gcd_props
gcd_eq
gcd_b_eq 📖mathematicalPNat
instMulPNat
gcdB'
gcd
gcd_props
gcd_eq
gcd_det_eq 📖mathematicalPNat
instMulPNat
gcdW
gcdZ
Nat.succPNat
gcdX
gcdY
gcd_props
gcd_eq 📖mathematicalgcdD
gcd
gcd_props
dvd_antisymm
dvd_gcd
Dvd.intro
mul_comm
Dvd.dvd.trans
dvd_mul_left
dvd_iff
gcd_props 📖mathematicalPNat
instMulPNat
gcdW
gcdZ
Nat.succPNat
gcdX
gcdY
gcdA'
gcdD
gcdB'
val
XgcdType.reduce_isReduced'
gcdA'_coe
gcdB'_coe
XgcdType.reduce_isSpecial'
mul_coe
Nat.succPNat_coe
XgcdType.reduce_v
XgcdType.start_v
add_mul
Distrib.rightDistribClass
eq
mul_add
Distrib.leftDistribClass
mul_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
gcd_rel_left 📖mathematicalval
gcdZ
gcdX
gcd
gcd_props
gcd_eq
gcd_rel_left' 📖mathematicalPNat
instMulPNat
gcdZ
gcdA'
Nat.succPNat
gcdX
val
gcdB'
gcd_props
gcd_rel_right 📖mathematicalval
gcdW
gcdY
gcd
gcd_props
gcd_eq
gcd_rel_right' 📖mathematicalPNat
instMulPNat
gcdW
gcdB'
Nat.succPNat
gcdY
val
gcdA'
gcd_props

PNat.XgcdType

Definitions

NameCategoryTheorems
IsReduced 📖MathDef
4 mathmath: flip_isReduced, reduce_isReduced, isReduced_iff, finish_isReduced
IsReduced' 📖MathDef
2 mathmath: reduce_isReduced', isReduced_iff
IsSpecial 📖MathDef
3 mathmath: flip_isSpecial, start_isSpecial, isSpecial_iff
IsSpecial' 📖MathDef
2 mathmath: isSpecial_iff, reduce_isSpecial'
a 📖CompOp
2 mathmath: flip_b, flip_a
ap 📖CompOp
1 mathmath: rq_eq
b 📖CompOp
2 mathmath: flip_b, flip_a
bp 📖CompOp
1 mathmath: rq_eq
finish 📖CompOp
4 mathmath: finish_v, reduce_a, finish_isSpecial, finish_isReduced
flip 📖CompOp
10 mathmath: flip_y, flip_b, flip_isSpecial, flip_isReduced, flip_x, reduce_b, flip_w, flip_a, flip_v, flip_z
instRepr 📖CompOp
instSizeOf 📖CompOp
1 mathmath: step_wf
mk' 📖CompOp
q 📖CompOp
2 mathmath: rq_eq, qp_eq
qp 📖CompOp
1 mathmath: qp_eq
r 📖CompOp
1 mathmath: rq_eq
reduce 📖CompOp
7 mathmath: reduce_isReduced', reduce_a, reduce_v, reduce_isSpecial, reduce_b, reduce_isReduced, reduce_isSpecial'
start 📖CompOp
2 mathmath: start_isSpecial, start_v
step 📖CompOp
4 mathmath: step_isSpecial, step_wf, reduce_b, step_v
succ₂ 📖CompOp
1 mathmath: v_eq_succ_vp
v 📖CompOp
6 mathmath: finish_v, reduce_v, v_eq_succ_vp, flip_v, step_v, start_v
vp 📖CompOp
1 mathmath: v_eq_succ_vp
w 📖CompOp
2 mathmath: flip_w, flip_z
wp 📖CompOp
x 📖CompOp
2 mathmath: flip_y, flip_x
y 📖CompOp
2 mathmath: flip_y, flip_x
z 📖CompOp
2 mathmath: flip_w, flip_z
zp 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
finish_isReduced 📖mathematicalIsReduced
finish
finish_isSpecial 📖mathematicalIsSpecialfinishadd_mul
Distrib.rightDistribClass
add_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
finish_v 📖mathematicalrv
finish
rq_eq
zero_add
qp_eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
flip_a 📖mathematicala
flip
b
flip_b 📖mathematicalb
flip
a
flip_isReduced 📖mathematicalIsReduced
flip
flip_isSpecial 📖mathematicalIsSpecial
flip
mul_comm
add_comm
flip_v 📖mathematicalv
flip
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
flip_w 📖mathematicalw
flip
z
flip_x 📖mathematicalx
flip
y
flip_y 📖mathematicaly
flip
x
flip_z 📖mathematicalz
flip
w
isReduced_iff 📖mathematicalIsReduced
IsReduced'
isSpecial_iff 📖mathematicalIsSpecial
IsSpecial'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
one_mul
mul_one
qp_eq 📖mathematicalrq
qp
rq_eq
add_zero
MulZeroClass.mul_zero
reduce_a 📖mathematicalrreduce
finish
reduce.eq_1
reduce_b 📖mathematicalreduce
flip
step
reduce.eq_1
reduce_isReduced 📖mathematicalIsReduced
reduce
reduce_a
finish_isReduced
step_wf
reduce_b
flip_isReduced
reduce_isReduced' 📖mathematicalIsReduced'
reduce
isReduced_iff
reduce_isReduced
reduce_isSpecial 📖mathematicalIsSpecialreducereduce_a
finish_isSpecial
step_wf
reduce_b
flip_isSpecial
step_isSpecial
reduce_isSpecial' 📖mathematicalIsSpecialIsSpecial'
reduce
isSpecial_iff
reduce_isSpecial
reduce_v 📖mathematicalv
reduce
reduce_a
finish_v
step_wf
reduce_b
flip_v
step_v
rq_eq 📖mathematicalr
bp
q
ap
start_isSpecial 📖mathematicalIsSpecial
start
start_v 📖mathematicalv
start
PNat.val
PNat.pos
step_isSpecial 📖mathematicalIsSpecialstepmul_add
Distrib.leftDistribClass
mul_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
step_v 📖mathematicalv
step
rq_eq
add_comm
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
step_wf 📖mathematicalPNat.XgcdType
instSizeOf
step
v_eq_succ_vp 📖mathematicalv
succ₂
vp
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Tactic.RingNF.add_assoc_rev

PNat.instInhabitedXgcdType

Definitions

NameCategoryTheorems
default 📖CompOp

---

← Back to Index