Documentation Verification Report

Part

πŸ“ Source: Mathlib/Data/Part.lean

Statistics

MetricCount
DefinitionsDom, assert, bind, equivOption, get, getOrElse, instAdd, instAppend, instCoeOption, instDiv, instInhabited, instInter, instInv, instMembership, instMod, instMonad, instMul, instNeg, instOne, instOrderBot, instPartialOrder, instSDiff, instSub, instUnion, instZero, map, none, noneDecidable, ofOption, ofOptionDecidable, restrict, some, someDecidable, toOption, unwrap
35
Theoremsbind, of_bind, toOption, left_unique, right_unique, add_def, add_get_eq, add_mem_add, append_def, append_get_eq, append_mem_append, assert_defined, assert_neg, assert_pos, bind_assoc, bind_defined, bind_dom, bind_eq_bind, bind_le, bind_map, bind_none, bind_of_mem, bind_some, bind_some_eq_map, bind_some_right, bind_toOption, coe_none, coe_some, div_def, div_get_eq, div_mem_div, dom_iff_mem, elim_toOption, eq_get_iff_mem, eq_iff_of_dom, eq_none_iff, eq_none_iff', eq_none_or_eq_some, eq_of_get_eq_get, eq_of_mem, eq_some_iff, eta, ext, ext', ext_iff, getOrElse_none, getOrElse_of_dom, getOrElse_of_not_dom, getOrElse_some, get_eq_get_of_eq, get_eq_iff_eq_some, get_eq_iff_mem, get_eq_of_mem, get_mem, get_some, induction_on, instLawfulMonad, inter_def, inter_get_eq, inter_mem_inter, inv_def, inv_mem_inv, inv_some, le_total_of_le_of_le, left_dom_of_add_dom, left_dom_of_append_dom, left_dom_of_div_dom, left_dom_of_inter_dom, left_dom_of_mod_dom, left_dom_of_mul_dom, left_dom_of_sdiff_dom, left_dom_of_sub_dom, left_dom_of_union_dom, map_Dom, map_bind, map_eq_map, map_get, map_id', map_map, map_none, map_some, mem_assert, mem_assert_iff, mem_bind, mem_bind_iff, mem_coe, mem_eq, mem_map, mem_map_iff, mem_mk_iff, mem_ofOption, mem_restrict, mem_right_unique, mem_some, mem_some_iff, mem_toOption, mem_unique, mod_def, mod_get_eq, mod_mem_mod, mul_def, mul_get_eq, mul_mem_mul, ne_none_iff, neg_def, neg_mem_neg, neg_some, none_ne_some, none_toOption, notMem_none, not_none_dom, ofOption_dom, ofOption_eq_get, of_toOption, one_def, one_mem_one, pure_eq_some, ret_eq_some, right_dom_of_add_dom, right_dom_of_append_dom, right_dom_of_div_dom, right_dom_of_inter_dom, right_dom_of_mod_dom, right_dom_of_mul_dom, right_dom_of_sdiff_dom, right_dom_of_sub_dom, right_dom_of_union_dom, sdiff_def, sdiff_get_eq, sdiff_mem_sdiff, some_add_some, some_append_some, some_div_some, some_dom, some_get, some_inj, some_injective, some_inter_some, some_mod_some, some_mul_some, some_ne_none, some_sdiff_some, some_sub_some, some_toOption, some_union_some, sub_def, sub_get_eq, sub_mem_sub, subsingleton, toOption_eq_none, toOption_eq_none_iff, toOption_eq_some_iff, toOption_isSome, to_ofOption, union_def, union_get_eq, union_mem_union, zero_def, zero_mem_zero
159
Total194

Part

Definitions

NameCategoryTheorems
Dom πŸ“–MathDef
48 mathmath: partialFunToPointed_map, Finset.pimage_eq_image_filter, Turing.tr_eval_dom, PartENat.dom_one, PartENat.dom_of_le_some, PartENat.dom_of_le_natCast, Partrec.merge', elim_toOption, Nat.rfind_dom, ofOption_dom, eta, Nat.rfindOpt_dom, PartENat.not_dom_iff_eq_top, partialFunEquivPointed_functor_map_toFun, PFun.dom_prodLift, eq_none_iff', toOption_eq_none, toOption_eq_none_iff, PartENat.toWithTop_add, ComputablePred.halting_problem_not_re, PartENat.ne_top_iff_dom, dom_iff_mem, PartENat.instCanLiftNatCastDom, PartENat.dom_some, PartENat.dom_natCast, not_none_dom, PFun.prodMap_apply, ComputablePred.halting_problem, PartENat.dom_ofNat, PartENat.dom_zero, PartENat.withTopEquiv_apply, PFun.dom_prodMap, PartENat.dom_of_lt, Nat.rfind_dom', Nat.Partrec.merge', Partrec.dom_re, toOption_isSome, ComputablePred.halting_problem_re, bind_dom, partialFunEquivPointed_inverse_map_Dom, Turing.TM2to1.tr_eval_dom, PFun.prodLift_apply, PartENat.find_dom, some_dom, PFun.dom_toSubtype_apply_iff, mem_eq, PFun.dom_of_mem_fix, map_Dom
assert πŸ“–CompOp
5 mathmath: assert_neg, assert_defined, assert_pos, mem_assert, mem_assert_iff
bind πŸ“–CompOp
48 mathmath: mem_bind_iff, PFun.bind_apply, Partrec.rfindOpt, map_bind, Nat.Partrec.prec', Nat.Partrec'.to_part, bind_some, bind_some_right, Partrec.sumCasesOn_right, Dom.bind, Nat.Partrec.Code.computable_recOn, OmegaCompletePartialOrder.ContinuousHom.bind_apply, Partrec.some, bind_defined, bind_toOption, Nat.Partrec.Code.eval_pappAck_step_succ, bind_of_mem, Partrecβ‚‚.comp, Computable.ofOption, Partrec.nat_iff, bind_some_eq_map, Computable.partrec, Partrec.nat_casesOn_right, Nat.Partrec'.part_iff, Partrec.const', Nat.Partrec'.bind, bind_map, bind_none, Partrec.sumCasesOn_left, Partrec.none, bind_assoc, Monotone.partBind, Partrec.bind_decodeβ‚‚_iff, Partrec.option_some_iff, Decidable.Partrec.const', mem_bind, Partrec.map_encode_iff, Partrec.optionCasesOn_right, bind_dom, Partrecβ‚‚.unpaired, Partrec.rfind, PFun.comp_apply, bind_eq_bind, PFun.Part.bind_comp, Antitone.partBind, Nat.Partrec'.part_iff₁, OrderHom.partBind_coe, Partrec.sumCasesOn
equivOption πŸ“–CompOpβ€”
get πŸ“–CompOp
52 mathmath: Finset.pimage_eq_image_filter, sub_get_eq, elim_toOption, PartENat.get_one, PartENat.eq_natCast_sub_of_add_eq_natCast, get_eq_of_mem, get_eq_iff_eq_some, mul_get_eq, PartENat.lt_coe_iff, eta, PartENat.get_natCast, inter_get_eq, mod_get_eq, Dom.bind, PartENat.le_coe_iff, eq_iff_of_dom, get_eq_get_of_eq, PartENat.get_eq_iff_eq_some, PartENat.get_le_get, PFun.fn_apply, PartENat.lt_def, map_get, get_mem, eq_get_iff_mem, PartENat.find_get, PartENat.natCast_get, PFun.get_prodLift, union_get_eq, getOrElse_of_dom, PartENat.le_def, PartENat.coe_lt_iff, PartENat.get_eq_iff_eq_coe, PFun.prodMap_apply, get_eq_iff_mem, PFun.get_prodMap, PartENat.get_zero, some_get, append_get_eq, Dom.toOption, PartENat.coe_le_iff, PartENat.get_ofNat', bind_dom, sdiff_get_eq, partialFunEquivPointed_inverse_map_get_coe, add_get_eq, PartENat.get_natCast', PFun.prodLift_apply, div_get_eq, get_some, mem_eq, PartENat.coe_add_get, PartENat.get_add
getOrElse πŸ“–CompOp
4 mathmath: getOrElse_of_dom, getOrElse_of_not_dom, getOrElse_some, getOrElse_none
instAdd πŸ“–CompOp
3 mathmath: add_def, some_add_some, add_mem_add
instAppend πŸ“–CompOp
3 mathmath: append_mem_append, append_def, some_append_some
instCoeOption πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
3 mathmath: div_def, some_div_some, div_mem_div
instInhabited πŸ“–CompOpβ€”
instInter πŸ“–CompOp
3 mathmath: inter_def, some_inter_some, inter_mem_inter
instInv πŸ“–CompOp
3 mathmath: inv_mem_inv, inv_def, inv_some
instMembership πŸ“–CompOp
55 mathmath: mem_bind_iff, Partrec.merge', one_mem_one, mem_mk_iff, mem_ofOption, Nat.rfind_dom, eq_some_iff, Nat.rfind_min', mem_some_iff, PFun.mem_dom, Mem.right_unique, PFun.image_def, coe_toFinset, ext_iff, Nat.mem_rfind, mem_toOption, PFun.mem_res, Turing.mem_eval, PFun.mem_restrict, get_mem, Finset.mem_pimage, mem_restrict, eq_get_iff_mem, Partrec.merge, mem_coe, subsingleton, dom_iff_mem, mem_Ο‰Sup, mem_some, eq_none_iff, Nat.rfindOpt_mono, PFun.mem_toSubtype_iff, Mem.left_unique, get_eq_iff_mem, Partrec.fix_aux, toOption_eq_some_iff, Nat.rfind_dom', PFun.mem_prodMap, Nat.Partrec.merge', PFun.mem_image, zero_mem_zero, notMem_none, PFun.mem_fix_iff, Fix.mem_iff, mem_map_iff, Nat.Partrec.Code.evaln_sound, Nat.Partrec.Code.evaln_complete, PFun.mem_prodLift, mem_toFinset, mem_eq, PFun.dom_eq, PFun.ext_iff, mem_assert_iff, PFun.Preimage_def, PFun.mem_preimage
instMod πŸ“–CompOp
3 mathmath: mod_mem_mod, mod_def, some_mod_some
instMonad πŸ“–CompOp
44 mathmath: inter_def, append_def, Turing.ToPartrec.Code.comp_eval, add_def, Turing.ToPartrec.Code.nil_eval, Turing.tr_eval', Nat.Partrec.prec', Turing.ToPartrec.Code.pred_eval, Turing.ToPartrec.Code.head_eval, Turing.ToPartrec.stepNormal_eval, bind_le, Turing.ToPartrec.Cont.then_eval, Turing.ToPartrec.Code.zero'_eval, Turing.ToPartrec.Code.tail_eval, Turing.ToPartrec.Code.id_eval, OmegaCompletePartialOrder.ContinuousHom.seq_apply, div_def, map_eq_map, Nat.Partrec.rfind', Nat.Partrec.Code.eval_prec_succ, OmegaCompletePartialOrder.ContinuousHom.Ο‰ScottContinuous.seq, Vector.mOfFn_part_some, Turing.ToPartrec.Code.cons_eval, Turing.ToPartrec.stepRet_eval, Turing.ToPartrec.cont_eval_fix, Antitone.partSeq, sub_def, instLawfulMonad, ret_eq_some, Monotone.partSeq, Turing.ToPartrec.Code.exists_code, mod_def, OmegaCompletePartialOrder.ContinuousHom.Ο‰Sup_bind, Turing.ToPartrec.Code.succ_eval, Turing.PartrecToTM2.tr_eval, Turing.ToPartrec.Code.Ok.zero, sdiff_def, union_def, mul_def, OmegaCompletePartialOrder.ContinuousHom.Ο‰ScottContinuous.map, Turing.ToPartrec.Code.zero_eval, pure_eq_some, bind_eq_bind, OmegaCompletePartialOrder.ContinuousHom.Ο‰ScottContinuous.bind
instMul πŸ“–CompOp
3 mathmath: mul_mem_mul, some_mul_some, mul_def
instNeg πŸ“–CompOp
3 mathmath: neg_some, neg_mem_neg, neg_def
instOne πŸ“–CompOp
2 mathmath: one_mem_one, one_def
instOrderBot πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
14 mathmath: Fix.exists_fix_le_approx, toUnitMono_coe, Fix.approx_mem_approxChain, Fix.approx_le_fix, bind_le, mem_Ο‰Sup, fix_eq_Ο‰Sup, mem_chain_of_mem_Ο‰Sup, Ο‰ScottContinuous_toUnitMono, Fix.approx_mono', Fix.mem_iff, fix_eq_Ο‰Sup_of_Ο‰ScottContinuous, OrderHom.partBind_coe, Fix.approx_mono
instSDiff πŸ“–CompOp
3 mathmath: some_sdiff_some, sdiff_def, sdiff_mem_sdiff
instSub πŸ“–CompOp
3 mathmath: sub_mem_sub, some_sub_some, sub_def
instUnion πŸ“–CompOp
3 mathmath: union_mem_union, some_union_some, union_def
instZero πŸ“–CompOp
2 mathmath: zero_def, zero_mem_zero
map πŸ“–CompOp
52 mathmath: inter_def, append_def, add_def, Partrec.rfindOpt, map_bind, Nat.Partrec'.to_part, Partrec.sumCasesOn_right, Nat.Partrec'.map, Nat.Partrec.Code.computable_recOn, Monotone.partMap, div_def, Partrec.some, map_get, map_eq_map, Nat.Partrec.rfind', Partrecβ‚‚.comp, Computable.ofOption, Partrec.nat_iff, map_map, inv_def, Antitone.partMap, bind_some_eq_map, Computable.partrec, Partrec.nat_casesOn_right, Nat.Partrec'.part_iff, Partrec.const', sub_def, map_id', bind_map, Partrec.sumCasesOn_left, mod_def, map_some, Partrec.none, Partrec.bind_decodeβ‚‚_iff, Partrec.option_some_iff, Decidable.Partrec.const', sdiff_def, union_def, mul_def, Partrec.map_encode_iff, Partrec.optionCasesOn_right, Turing.ToPartrec.Code.fix_eval, Partrecβ‚‚.unpaired, mem_map, neg_def, mem_map_iff, map_none, Partrec.rfind, Nat.Partrec'.part_iff₁, map_Dom, OmegaCompletePartialOrder.ContinuousHom.map_apply, Partrec.sumCasesOn
none πŸ“–CompOp
16 mathmath: Nat.Partrec.none, PartENat.top_eq_none, assert_neg, eq_none_iff', Ο‰Sup_eq_none, eq_none_iff, toFinset_none, none_toOption, not_none_dom, fix_def', bind_none, getOrElse_none, coe_none, notMem_none, map_none, eq_none_or_eq_some
noneDecidable πŸ“–CompOp
1 mathmath: PartENat.toWithTop_top
ofOption πŸ“–CompOp
34 mathmath: Nat.Partrec.ppred, ofOption_eq_get, mem_ofOption, Partrec.rfindOpt, ofOption_dom, Nat.Partrec'.to_part, PartialFun.Iso.mk_inv, Partrec.sumCasesOn_right, coe_some, Nat.Partrec.Code.computable_recOn, Partrec.some, mem_coe, Partrecβ‚‚.comp, Computable.ofOption, Partrec.nat_iff, Computable.partrec, Partrec.nat_casesOn_right, Nat.Partrec'.part_iff, Partrec.const', Partrec.sumCasesOn_left, Partrec.none, Partrec.bind_decodeβ‚‚_iff, Partrec.option_some_iff, Decidable.Partrec.const', coe_none, Partrec.map_encode_iff, Partrec.optionCasesOn_right, Partrecβ‚‚.unpaired, of_toOption, Partrec.rfind, PartialFun.Iso.mk_hom, Nat.Partrec'.part_iff₁, Partrec.sumCasesOn, to_ofOption
ofOptionDecidable πŸ“–CompOp
1 mathmath: to_ofOption
restrict πŸ“–CompOp
1 mathmath: mem_restrict
some πŸ“–CompOp
44 mathmath: neg_some, one_def, some_injective, Nat.Partrec.Code.eval_const, some_toOption, get_eq_iff_eq_some, eq_some_iff, bind_some, bind_some_right, mem_some_iff, coe_some, PFun.coe_val, some_add_some, some_inter_some, toFinset_some, some_union_some, PFun.id_apply, Partrec.some, some_inj, some_sdiff_some, ne_none_iff, mem_Ο‰Sup, Vector.mOfFn_part_some, Nat.Partrec.Code.eval_id, mem_some, inv_some, bind_some_eq_map, some_sub_some, mem_chain_of_mem_Ο‰Sup, ret_eq_some, getOrElse_some, Finset.pimage_some, map_some, some_get, zero_def, some_mul_some, some_append_some, some_mod_some, some_div_some, Nat.Partrec.some, pure_eq_some, some_dom, eq_none_or_eq_some, Nat.Partrec.Code.eval_pappAck
someDecidable πŸ“–CompOp
2 mathmath: PartENat.toWithTop_one, PartENat.toWithTop_zero
toOption πŸ“–CompOp
14 mathmath: partialFunToPointed_map, elim_toOption, some_toOption, mem_toOption, partialFunEquivPointed_functor_map_toFun, toOption_eq_none, toOption_eq_none_iff, bind_toOption, none_toOption, toOption_eq_some_iff, Dom.toOption, toOption_isSome, of_toOption, to_ofOption
unwrap πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_def πŸ“–mathematicalβ€”Part
instAdd
instMonad
map
β€”β€”
add_get_eq πŸ“–mathematicalDom
Part
instAdd
get
left_dom_of_add_dom
right_dom_of_add_dom
β€”β€”
add_mem_add πŸ“–mathematicalPart
instMembership
instAddβ€”β€”
append_def πŸ“–mathematicalβ€”Part
instAppend
instMonad
map
β€”β€”
append_get_eq πŸ“–mathematicalDom
Part
instAppend
get
left_dom_of_append_dom
right_dom_of_append_dom
β€”left_dom_of_append_dom
right_dom_of_append_dom
append_mem_append πŸ“–mathematicalPart
instMembership
instAppendβ€”β€”
assert_defined πŸ“–mathematicalDomassertβ€”β€”
assert_neg πŸ“–mathematicalβ€”assert
none
β€”ext
instIsEmptyFalse
assert_pos πŸ“–mathematicalβ€”assertβ€”ext
bind_assoc πŸ“–mathematicalβ€”bindβ€”ext
bind_defined πŸ“–mathematicalDom
get
bindβ€”assert_defined
bind_dom πŸ“–mathematicalβ€”Dom
bind
get
β€”β€”
bind_eq_bind πŸ“–mathematicalβ€”Part
instMonad
bind
β€”β€”
bind_le πŸ“–mathematicalβ€”Part
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instMonad
β€”β€”
bind_map πŸ“–mathematicalβ€”bind
map
β€”bind_some_eq_map
bind_assoc
bind_some
bind_none πŸ“–mathematicalβ€”bind
none
β€”eq_none_iff
bind_of_mem πŸ“–mathematicalPart
instMembership
bindβ€”eq_some_iff
bind_some
bind_some πŸ“–mathematicalβ€”bind
some
β€”ext
bind_some_eq_map πŸ“–mathematicalβ€”bind
some
map
β€”ext
bind_some_right πŸ“–mathematicalβ€”bind
some
β€”bind_some_eq_map
map_id'
bind_toOption πŸ“–mathematicalβ€”toOption
bind
β€”Dom.toOption
toOption.congr_simp
Dom.bind
toOption_eq_none_iff
Dom.of_bind
coe_none πŸ“–mathematicalβ€”ofOption
none
β€”β€”
coe_some πŸ“–mathematicalβ€”ofOption
some
β€”β€”
div_def πŸ“–mathematicalβ€”Part
instDiv
instMonad
map
β€”β€”
div_get_eq πŸ“–mathematicalDom
Part
instDiv
get
left_dom_of_div_dom
right_dom_of_div_dom
β€”left_dom_of_div_dom
right_dom_of_div_dom
div_mem_div πŸ“–mathematicalPart
instMembership
instDivβ€”β€”
dom_iff_mem πŸ“–mathematicalβ€”Dom
Part
instMembership
β€”β€”
elim_toOption πŸ“–mathematicalβ€”toOption
Dom
get
β€”Dom.toOption
toOption_eq_none_iff
eq_get_iff_mem πŸ“–mathematicalDomget
Part
instMembership
β€”get_eq_iff_mem
eq_iff_of_dom πŸ“–mathematicalDomgetβ€”eq_of_get_eq_get
get_eq_get_of_eq
eq_none_iff πŸ“–mathematicalβ€”none
Part
instMembership
β€”notMem_none
ext
eq_none_iff' πŸ“–mathematicalβ€”none
Dom
β€”eq_none_iff
Exists.fst
eq_none_or_eq_some πŸ“–mathematicalβ€”none
some
β€”ne_none_iff
eq_of_get_eq_get πŸ“–β€”Dom
get
β€”β€”ext'
eq_of_mem πŸ“–β€”Dom
Part
instMembership
get
β€”β€”dom_iff_mem
eq_iff_of_dom
eq_get_iff_mem
eq_some_iff πŸ“–mathematicalβ€”some
Part
instMembership
β€”mem_some
ext'
eta πŸ“–mathematicalβ€”Dom
get
β€”β€”
ext πŸ“–β€”Part
instMembership
β€”β€”ext'
Exists.fst
Exists.snd
ext' πŸ“–β€”Dom
get
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”Part
instMembership
β€”ext
getOrElse_none πŸ“–mathematicalβ€”getOrElse
none
β€”getOrElse_of_not_dom
not_none_dom
getOrElse_of_dom πŸ“–mathematicalDomgetOrElse
get
β€”β€”
getOrElse_of_not_dom πŸ“–mathematicalDomgetOrElseβ€”β€”
getOrElse_some πŸ“–mathematicalβ€”getOrElse
some
β€”getOrElse_of_dom
some_dom
get_eq_get_of_eq πŸ“–mathematicalDomget
Part
β€”β€”
get_eq_iff_eq_some πŸ“–mathematicalDomget
some
β€”some_get
get.congr_simp
get_eq_iff_mem πŸ“–mathematicalDomget
Part
instMembership
β€”β€”
get_eq_of_mem πŸ“–mathematicalPart
instMembership
Dom
getβ€”mem_unique
get_mem πŸ“–mathematicalDomPart
instMembership
get
β€”β€”
get_some πŸ“–mathematicalDom
some
getβ€”β€”
induction_on πŸ“–β€”none
some
β€”β€”some_get
eq_none_iff'
instLawfulMonad πŸ“–mathematicalβ€”Part
instMonad
β€”ext'
bind_some_eq_map
bind_some
bind_assoc
some_get
get.congr_simp
inter_def πŸ“–mathematicalβ€”Part
instInter
instMonad
map
β€”β€”
inter_get_eq πŸ“–mathematicalDom
Part
instInter
get
left_dom_of_inter_dom
right_dom_of_inter_dom
β€”left_dom_of_inter_dom
right_dom_of_inter_dom
inter_mem_inter πŸ“–mathematicalPart
instMembership
instInterβ€”β€”
inv_def πŸ“–mathematicalβ€”Part
instInv
map
β€”β€”
inv_mem_inv πŸ“–mathematicalPart
instMembership
instInvβ€”β€”
inv_some πŸ“–mathematicalβ€”Part
instInv
some
β€”β€”
le_total_of_le_of_le πŸ“–β€”Part
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”β€”eq_none_or_eq_some
OrderBot.bot_le
eq_some_iff
mem_unique
left_dom_of_add_dom πŸ“–β€”Dom
Part
instAdd
β€”β€”β€”
left_dom_of_append_dom πŸ“–β€”Dom
Part
instAppend
β€”β€”β€”
left_dom_of_div_dom πŸ“–β€”Dom
Part
instDiv
β€”β€”β€”
left_dom_of_inter_dom πŸ“–β€”Dom
Part
instInter
β€”β€”β€”
left_dom_of_mod_dom πŸ“–β€”Dom
Part
instMod
β€”β€”β€”
left_dom_of_mul_dom πŸ“–β€”Dom
Part
instMul
β€”β€”β€”
left_dom_of_sdiff_dom πŸ“–β€”Dom
Part
instSDiff
β€”β€”β€”
left_dom_of_sub_dom πŸ“–β€”Dom
Part
instSub
β€”β€”β€”
left_dom_of_union_dom πŸ“–β€”Dom
Part
instUnion
β€”β€”β€”
map_Dom πŸ“–mathematicalβ€”Dom
map
β€”β€”
map_bind πŸ“–mathematicalβ€”map
bind
β€”bind_some_eq_map
bind_assoc
map_eq_map πŸ“–mathematicalβ€”Part
instMonad
map
β€”β€”
map_get πŸ“–mathematicalDomget
map
β€”β€”
map_id' πŸ“–mathematicalβ€”mapβ€”instLawfulMonad
map_map πŸ“–mathematicalβ€”mapβ€”β€”
map_none πŸ“–mathematicalβ€”map
none
β€”eq_none_iff
map_some πŸ“–mathematicalβ€”map
some
β€”eq_some_iff
mem_map
mem_some
mem_assert πŸ“–mathematicalPart
instMembership
assertβ€”β€”
mem_assert_iff πŸ“–mathematicalβ€”Part
instMembership
assert
β€”mem_assert
mem_bind πŸ“–mathematicalPart
instMembership
bindβ€”β€”
mem_bind_iff πŸ“–mathematicalβ€”Part
instMembership
bind
β€”mem_bind
mem_coe πŸ“–mathematicalβ€”Part
instMembership
ofOption
β€”mem_ofOption
mem_eq πŸ“–mathematicalβ€”Part
instMembership
Dom
get
β€”β€”
mem_map πŸ“–mathematicalPart
instMembership
mapβ€”β€”
mem_map_iff πŸ“–mathematicalβ€”Part
instMembership
map
β€”mem_map
mem_mk_iff πŸ“–mathematicalβ€”Part
instMembership
β€”β€”
mem_ofOption πŸ“–mathematicalβ€”Part
instMembership
ofOption
β€”Exists.fst
Exists.snd
mem_restrict πŸ“–mathematicalDomPart
instMembership
restrict
β€”β€”
mem_right_unique πŸ“–β€”Part
instMembership
β€”β€”ext'
mem_some πŸ“–mathematicalβ€”Part
instMembership
some
β€”β€”
mem_some_iff πŸ“–mathematicalβ€”Part
instMembership
some
β€”β€”
mem_toOption πŸ“–mathematicalβ€”toOption
Part
instMembership
β€”Exists.fst
mem_unique πŸ“–β€”Part
instMembership
β€”β€”β€”
mod_def πŸ“–mathematicalβ€”Part
instMod
instMonad
map
β€”β€”
mod_get_eq πŸ“–mathematicalDom
Part
instMod
get
left_dom_of_mod_dom
right_dom_of_mod_dom
β€”left_dom_of_mod_dom
right_dom_of_mod_dom
mod_mem_mod πŸ“–mathematicalPart
instMembership
instModβ€”β€”
mul_def πŸ“–mathematicalβ€”Part
instMul
instMonad
map
β€”β€”
mul_get_eq πŸ“–mathematicalDom
Part
instMul
get
left_dom_of_mul_dom
right_dom_of_mul_dom
β€”β€”
mul_mem_mul πŸ“–mathematicalPart
instMembership
instMulβ€”β€”
ne_none_iff πŸ“–mathematicalβ€”someβ€”eq_none_iff'
eq_some_iff
get_mem
some_ne_none
neg_def πŸ“–mathematicalβ€”Part
instNeg
map
β€”β€”
neg_mem_neg πŸ“–mathematicalPart
instMembership
instNegβ€”mem_map_iff
neg_some πŸ“–mathematicalβ€”Part
instNeg
some
β€”β€”
none_ne_some πŸ“–β€”β€”β€”β€”some_ne_none
none_toOption πŸ“–mathematicalβ€”toOption
none
β€”β€”
notMem_none πŸ“–mathematicalβ€”Part
instMembership
none
β€”Exists.fst
not_none_dom πŸ“–mathematicalβ€”Dom
none
β€”β€”
ofOption_dom πŸ“–mathematicalβ€”Dom
ofOption
β€”β€”
ofOption_eq_get πŸ“–mathematicalβ€”ofOptionβ€”ext'
ofOption_dom
of_toOption πŸ“–mathematicalβ€”ofOption
toOption
β€”ext
mem_ofOption
mem_toOption
one_def πŸ“–mathematicalβ€”Part
instOne
some
β€”β€”
one_mem_one πŸ“–mathematicalβ€”Part
instMembership
instOne
β€”β€”
pure_eq_some πŸ“–mathematicalβ€”Part
instMonad
some
β€”β€”
ret_eq_some πŸ“–mathematicalβ€”Part
instMonad
some
β€”β€”
right_dom_of_add_dom πŸ“–β€”Dom
Part
instAdd
β€”β€”β€”
right_dom_of_append_dom πŸ“–β€”Dom
Part
instAppend
β€”β€”β€”
right_dom_of_div_dom πŸ“–β€”Dom
Part
instDiv
β€”β€”β€”
right_dom_of_inter_dom πŸ“–β€”Dom
Part
instInter
β€”β€”β€”
right_dom_of_mod_dom πŸ“–β€”Dom
Part
instMod
β€”β€”β€”
right_dom_of_mul_dom πŸ“–β€”Dom
Part
instMul
β€”β€”β€”
right_dom_of_sdiff_dom πŸ“–β€”Dom
Part
instSDiff
β€”β€”β€”
right_dom_of_sub_dom πŸ“–β€”Dom
Part
instSub
β€”β€”β€”
right_dom_of_union_dom πŸ“–β€”Dom
Part
instUnion
β€”β€”β€”
sdiff_def πŸ“–mathematicalβ€”Part
instSDiff
instMonad
map
β€”β€”
sdiff_get_eq πŸ“–mathematicalDom
Part
instSDiff
get
left_dom_of_sdiff_dom
right_dom_of_sdiff_dom
β€”left_dom_of_sdiff_dom
right_dom_of_sdiff_dom
sdiff_mem_sdiff πŸ“–mathematicalPart
instMembership
instSDiffβ€”β€”
some_add_some πŸ“–mathematicalβ€”Part
instAdd
some
β€”map_some
bind_some
some_append_some πŸ“–mathematicalβ€”Part
instAppend
some
β€”map_some
bind_some
some_div_some πŸ“–mathematicalβ€”Part
instDiv
some
β€”map_some
bind_some
some_dom πŸ“–mathematicalβ€”Dom
some
β€”β€”
some_get πŸ“–mathematicalDomsome
get
β€”eq_some_iff
some_inj πŸ“–mathematicalβ€”someβ€”some_injective
some_injective πŸ“–mathematicalβ€”Part
some
β€”β€”
some_inter_some πŸ“–mathematicalβ€”Part
instInter
some
β€”map_some
bind_some
some_mod_some πŸ“–mathematicalβ€”Part
instMod
some
β€”map_some
bind_some
some_mul_some πŸ“–mathematicalβ€”Part
instMul
some
β€”map_some
bind_some
some_ne_none πŸ“–β€”β€”β€”β€”β€”
some_sdiff_some πŸ“–mathematicalβ€”Part
instSDiff
some
β€”map_some
bind_some
some_sub_some πŸ“–mathematicalβ€”Part
instSub
some
β€”map_some
bind_some
some_toOption πŸ“–mathematicalβ€”toOption
some
β€”β€”
some_union_some πŸ“–mathematicalβ€”Part
instUnion
some
β€”map_some
bind_some
sub_def πŸ“–mathematicalβ€”Part
instSub
instMonad
map
β€”β€”
sub_get_eq πŸ“–mathematicalDom
Part
instSub
get
left_dom_of_sub_dom
right_dom_of_sub_dom
β€”left_dom_of_sub_dom
right_dom_of_sub_dom
sub_mem_sub πŸ“–mathematicalPart
instMembership
instSubβ€”mem_bind_iff
mem_map_iff
subsingleton πŸ“–mathematicalβ€”Set.Subsingleton
setOf
Part
instMembership
β€”mem_unique
toOption_eq_none πŸ“–mathematicalβ€”toOption
Dom
β€”β€”
toOption_eq_none_iff πŸ“–mathematicalβ€”toOption
Dom
β€”Ne.dite_eq_right_iff
toOption_eq_some_iff πŸ“–mathematicalβ€”toOption
Part
instMembership
β€”mem_toOption
toOption_isSome πŸ“–mathematicalβ€”toOption
Dom
β€”β€”
to_ofOption πŸ“–mathematicalβ€”toOption
ofOption
ofOptionDecidable
β€”β€”
union_def πŸ“–mathematicalβ€”Part
instUnion
instMonad
map
β€”β€”
union_get_eq πŸ“–mathematicalDom
Part
instUnion
get
left_dom_of_union_dom
right_dom_of_union_dom
β€”left_dom_of_union_dom
right_dom_of_union_dom
union_mem_union πŸ“–mathematicalPart
instMembership
instUnionβ€”β€”
zero_def πŸ“–mathematicalβ€”Part
instZero
some
β€”β€”
zero_mem_zero πŸ“–mathematicalβ€”Part
instMembership
instZero
β€”β€”

Part.Dom

Theorems

NameKindAssumesProvesValidatesDepends On
bind πŸ“–mathematicalPart.DomPart.bind
Part.get
β€”Part.ext
Part.get_eq_of_mem
Part.get_mem
of_bind πŸ“–β€”Part.Dom
Part.bind
β€”β€”β€”
toOption πŸ“–mathematicalPart.DomPart.toOption
Part.get
β€”β€”

Part.Mem

Theorems

NameKindAssumesProvesValidatesDepends On
left_unique πŸ“–mathematicalβ€”Relator.LeftUnique
Part
Part.instMembership
β€”Part.mem_unique
right_unique πŸ“–mathematicalβ€”Relator.RightUnique
Part
Part.instMembership
β€”Part.mem_right_unique

---

← Back to Index