Documentation Verification Report

Lex

πŸ“ Source: Mathlib/Data/Prod/Lex.lean

Statistics

MetricCount
DefinitionsboundedOrder, instLE, instLT, instLinearOrder, instOrdLexProd, instPartialOrder, instPreorder, instWellFoundedRelationLexOfWellFoundedLT, orderBot, orderTop, Β«term_Γ—β‚—_Β»
11
Theoremslex_eq, compare_def, covBy_iff, instDenselyOrderedLex, instOrientedOrdLex, instTransOrdLex, instWellFoundedLTLex, le_iff, le_iff', lt_iff, lt_iff', monotone_fst, monotone_fst_ofLex, noMaxOrder_of_left, noMaxOrder_of_right, noMinOrder_of_left, noMinOrder_of_right, toLex_covBy_toLex_iff, toLex_le_toLex, toLex_le_toLex', toLex_lt_toLex, toLex_lt_toLex', toLex_mono, toLex_strictMono, fst_ofLex, lexOrd_eq
26
Total37

Ord

Theorems

NameKindAssumesProvesValidatesDepends On
lex_eq πŸ“–mathematicalβ€”Prod.Lex.instOrdLexProdβ€”β€”

Prod.Lex

Definitions

NameCategoryTheorems
boundedOrder πŸ“–CompOpβ€”
instLE πŸ“–CompOp
15 mathmath: toLex_le_toLex', prodLexAssoc_symm_apply, sumLexProdLexDistrib_symm_apply, Tuple.graphEquivβ‚‚_apply, le_iff, Tuple.self_comp_sort, sumLexProdLexDistrib_apply, uniqueProd_apply, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_snd, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_fst, prodUnique_apply, toLex_le_toLex, prodLexCongr_apply, prodLexAssoc_apply, le_iff'
instLT πŸ“–CompOp
15 mathmath: toLex_lt_toLex', lt_iff', instDenselyOrderedLex, prodLexAssoc_symm_apply, noMaxOrder_of_left, noMinOrder_of_left, toLex_lt_toLex, covBy_iff, noMinOrder_of_right, noMaxOrder_of_right, toLex_covBy_toLex_iff, instWellFoundedLTLex, lt_iff, Finsupp.DegLex.lt_def, prodLexAssoc_apply
instLinearOrder πŸ“–CompOp
4 mathmath: OrderType.type_lex_prod, Finset.intervalGapsWithin_snd_of_lt, Finset.intervalGapsWithin_succ_fst_of_lt, Finset.intervalGapsWithin_fst_of_lt_lt
instOrdLexProd πŸ“–CompOp
5 mathmath: compare_def, instOrientedOrdLex, Ord.lex_eq, lexOrd_eq, instTransOrdLex
instPartialOrder πŸ“–CompOp
8 mathmath: isOrderedAddMonoid, HahnSeries.iterateEquiv_apply, isOrderedCancelMonoid, HVertexOperator.coeff_comp, isOrderedMonoid, HVertexOperator.comp_apply, HahnSeries.iterateEquiv_symm_apply, isOrderedAddCancelMonoid
instPreorder πŸ“–CompOp
27 mathmath: Set.PartiallyWellOrderedOn.subsetProdLex, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, monotone_fst_ofLex, toLexOrderHom_coe, OrderAddMonoidHom.addCommute_inlβ‚—_inrβ‚—, Tuple.monotone_proj, OrderMonoidHom.inrβ‚—_apply, OrderMonoidHom.inlβ‚—_mul_inrβ‚—_eq_toLex, OrderAddMonoidHom.fstβ‚—_comp_inlβ‚—, LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ‚—, OrderMonoidHom.inlβ‚—_apply, OrderAddMonoidHom.inlβ‚—_apply, OrderMonoidHom.fstβ‚—_apply, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ‚—, OrderMonoidHom.commute_inlβ‚—_inrβ‚—, LinearOrderedCommGroupWithZero.fst_comp_inl, OrderAddMonoidHom.inlβ‚—_add_inrβ‚—_eq_toLex, toLex_mono, LinearOrderedCommGroupWithZero.fst_apply, Tuple.eq_sort_iff', OrderAddMonoidHom.fstβ‚—_apply, toLex_strictMono, OrderMonoidHom.fstβ‚—_comp_inlβ‚—, LinearOrderedCommGroupWithZero.inl_apply, LinearOrderedCommGroupWithZero.inr_apply, OrderAddMonoidHom.inrβ‚—_apply, Set.PartiallyWellOrderedOn.ProdLex_iff
instWellFoundedRelationLexOfWellFoundedLT πŸ“–CompOpβ€”
orderBot πŸ“–CompOpβ€”
orderTop πŸ“–CompOpβ€”
Β«term_Γ—β‚—_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
compare_def πŸ“–mathematicalβ€”Lex
instOrdLexProd
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”β€”
covBy_iff πŸ“–mathematicalβ€”CovBy
Lex
instLT
Preorder.toLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
IsMax
Preorder.toLE
IsMin
β€”toLex_covBy_toLex_iff
instDenselyOrderedLex πŸ“–mathematicalβ€”DenselyOrdered
Lex
instLT
Preorder.toLT
β€”exists_between
instOrientedOrdLex πŸ“–mathematicalβ€”Lex
instOrdLexProd
β€”β€”
instTransOrdLex πŸ“–mathematicalβ€”Lex
instOrdLexProd
β€”β€”
instWellFoundedLTLex πŸ“–mathematicalβ€”WellFoundedLT
Lex
instLT
β€”instIsWellFounded
le_iff πŸ“–mathematicalβ€”Lex
instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”β€”
le_iff' πŸ“–mathematicalβ€”Lex
instLE
Preorder.toLT
PartialOrder.toPreorder
Preorder.toLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”toLex_le_toLex'
lt_iff πŸ“–mathematicalβ€”Lex
instLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”β€”
lt_iff' πŸ“–mathematicalβ€”Lex
instLT
Preorder.toLT
PartialOrder.toPreorder
Preorder.toLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”toLex_lt_toLex'
monotone_fst πŸ“–mathematicalLex
instLE
Preorder.toLT
Preorder.toLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”toLex_le_toLex
LT.lt.le
Eq.le
monotone_fst_ofLex πŸ“–mathematicalβ€”Monotone
Lex
instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”monotone_fst
noMaxOrder_of_left πŸ“–mathematicalβ€”NoMaxOrder
Lex
instLT
Preorder.toLT
β€”NoMaxOrder.exists_gt
noMaxOrder_of_right πŸ“–mathematicalβ€”NoMaxOrder
Lex
instLT
Preorder.toLT
β€”NoMaxOrder.exists_gt
noMinOrder_of_left πŸ“–mathematicalβ€”NoMinOrder
Lex
instLT
Preorder.toLT
β€”NoMinOrder.exists_lt
noMinOrder_of_right πŸ“–mathematicalβ€”NoMinOrder
Lex
instLT
Preorder.toLT
β€”NoMinOrder.exists_lt
toLex_covBy_toLex_iff πŸ“–mathematicalβ€”CovBy
Lex
instLT
Preorder.toLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
IsMax
Preorder.toLE
IsMin
β€”Function.Surjective.forall
Equiv.surjective
toLex_le_toLex πŸ“–mathematicalβ€”Lex
instLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLex_le_toLex' πŸ“–mathematicalβ€”Lex
instLE
Preorder.toLT
PartialOrder.toPreorder
Preorder.toLE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLex_lt_toLex πŸ“–mathematicalβ€”Lex
instLT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLex_lt_toLex' πŸ“–mathematicalβ€”Lex
instLT
Preorder.toLT
PartialOrder.toPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Preorder.toLE
β€”toLex_lt_toLex
toLex_mono πŸ“–mathematicalβ€”Monotone
Lex
Prod.instPreorder
PartialOrder.toPreorder
instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”toLex_le_toLex'
toLex_strictMono πŸ“–mathematicalβ€”StrictMono
Lex
Prod.instPreorder
PartialOrder.toPreorder
instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”LE.le.eq_or_lt
LT.lt.le
Prod.mk_lt_mk_iff_right

WCovBy

Theorems

NameKindAssumesProvesValidatesDepends On
fst_ofLex πŸ“–mathematicalWCovBy
Lex
Prod.Lex.instPreorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”Prod.Lex.monotone_fst

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
lexOrd_eq πŸ“–mathematicalβ€”Prod.Lex.instOrdLexProdβ€”β€”

---

← Back to Index