| Name | Category | Theorems |
boundedOrder π | CompOp | β |
instLE π | CompOp | 15 mathmath: toLex_le_toLex', prodLexAssoc_symm_apply, sumLexProdLexDistrib_symm_apply, Tuple.graphEquivβ_apply, le_iff, Tuple.self_comp_sort, sumLexProdLexDistrib_apply, uniqueProd_apply, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_snd, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_fst, prodUnique_apply, toLex_le_toLex, prodLexCongr_apply, prodLexAssoc_apply, le_iff'
|
instLT π | CompOp | 15 mathmath: toLex_lt_toLex', lt_iff', instDenselyOrderedLex, prodLexAssoc_symm_apply, noMaxOrder_of_left, noMinOrder_of_left, toLex_lt_toLex, covBy_iff, noMinOrder_of_right, noMaxOrder_of_right, toLex_covBy_toLex_iff, instWellFoundedLTLex, lt_iff, Finsupp.DegLex.lt_def, prodLexAssoc_apply
|
instLinearOrder π | CompOp | 4 mathmath: OrderType.type_lex_prod, Finset.intervalGapsWithin_snd_of_lt, Finset.intervalGapsWithin_succ_fst_of_lt, Finset.intervalGapsWithin_fst_of_lt_lt
|
instOrdLexProd π | CompOp | 5 mathmath: compare_def, instOrientedOrdLex, Ord.lex_eq, lexOrd_eq, instTransOrdLex
|
instPartialOrder π | CompOp | 8 mathmath: isOrderedAddMonoid, HahnSeries.iterateEquiv_apply, isOrderedCancelMonoid, HVertexOperator.coeff_comp, isOrderedMonoid, HVertexOperator.comp_apply, HahnSeries.iterateEquiv_symm_apply, isOrderedAddCancelMonoid
|
instPreorder π | CompOp | 27 mathmath: Set.PartiallyWellOrderedOn.subsetProdLex, LinearOrderedCommGroupWithZero.inl_mul_inr_eq_coe_toLex, monotone_fst_ofLex, toLexOrderHom_coe, OrderAddMonoidHom.addCommute_inlβ_inrβ, Tuple.monotone_proj, OrderMonoidHom.inrβ_apply, OrderMonoidHom.inlβ_mul_inrβ_eq_toLex, OrderAddMonoidHom.fstβ_comp_inlβ, LinearOrderedCommGroupWithZero.inl_eq_coe_inlβ, OrderMonoidHom.inlβ_apply, OrderAddMonoidHom.inlβ_apply, OrderMonoidHom.fstβ_apply, LinearOrderedCommGroupWithZero.inr_eq_coe_inrβ, OrderMonoidHom.commute_inlβ_inrβ, LinearOrderedCommGroupWithZero.fst_comp_inl, OrderAddMonoidHom.inlβ_add_inrβ_eq_toLex, toLex_mono, LinearOrderedCommGroupWithZero.fst_apply, Tuple.eq_sort_iff', OrderAddMonoidHom.fstβ_apply, toLex_strictMono, OrderMonoidHom.fstβ_comp_inlβ, LinearOrderedCommGroupWithZero.inl_apply, LinearOrderedCommGroupWithZero.inr_apply, OrderAddMonoidHom.inrβ_apply, Set.PartiallyWellOrderedOn.ProdLex_iff
|
instWellFoundedRelationLexOfWellFoundedLT π | CompOp | β |
orderBot π | CompOp | β |
orderTop π | CompOp | β |
Β«term_Γβ_Β» π | CompOp | β |