Documentation Verification Report

Quot

📁 Source: Mathlib/Data/Quot.lean

Statistics

MetricCount
DefinitionsQuot, factor, hrecOn₂, instDecidableLiftOnOfDecidablePred_mathlib, instDecidableLiftOn₂OfDecidablePred, instInhabited_mathlib, instUnique, decidablePred, liftOn₂, lift₂, decidablePred, map, mapRight, map₂, out, recOnSubsingleton₂, unquot, choice, eval, hrecOn', hrecOn₂, hrecOn₂', instDecidableLiftOn'OfDecidablePred, instDecidableLiftOnOfDecidablePred_mathlib, instDecidableLiftOn₂'OfDecidablePred, instDecidableLiftOn₂OfDecidablePred_mathlib, instInhabitedQuotient, instUniqueQuotient, decidablePred, liftOn', liftOn₂', decidablePred, map, map', map₂, map₂', mk'', out, recOnSubsingleton', recOnSubsingleton₂', «term⟦_⟧», instCoeFunForallForallProp_mathlib, bind, instInhabited, instMonad, liftOn, map, mk, out, rec, recOn, recOnSubsingleton, piSetoid, trueSetoid
54
Theoremsquot_mk_eq_iff, eq, factor_mk_eq, induction_on, induction_on₂, induction_on₃, liftOn_mk, liftOn₂_mk, lift_mk, lift₂_mk, map₂_mk, mk_surjective, out_eq, surjective_lift, choice_eq, eq, eq', eq'', eq_iff_equiv, eq_mk_iff_out, eval_mk, exact', exists, forall, hrecOn'_mk'', hrecOn₂'_mk'', ind', inductionOn', inductionOn₂', inductionOn₃', induction_on_pi, ind₂', instIsEquivEquiv, instSubsingletonQuotient, liftOn'_mk, liftOn'_mk'', liftOn_mk, liftOn₂'_mk, liftOn₂'_mk'', liftOn₂_mk, lift_comp_mk, lift_mk, lift_surjective, lift_surjective_iff, lift₂_mk, map'_mk, map'_mk'', map_mk, map₂'_mk'', map₂_mk, mk''_eq_mk, mk''_surjective, mk'_surjective, mk_eq_iff_out, mk_out, mk_out', mk_surjective, out_eq, out_eq', out_equiv_out, out_inj, out_injective, sound', surjective_liftOn', ext, eq, exists_rep, ind, induction_on, induction_on₂, instLawfulMonad, instSubsingletonTrunc, lift_mk, nonempty, out_eq, nonempty_quotient_iff, true_equivalence
77
Total131

AddCommGrpCat.Colimits

Definitions

NameCategoryTheorems
Quot 📖CompOp
14 mathmath: AddCommGrpCat.isColimit_iff_bijective_desc, AddCommGrpCat.instSmallQuot, colimitCocone_ι_app, quotUliftToQuot_ι, colimitCocone_pt, Quot.desc_toCocone_desc, quotToQuotUlift_ι, Quot.desc_colimitCocone, Quot.desc_toCocone_desc_app, toCocone_ι_app, Quot.ι_desc, Quot.map_ι, Quot.desc_quotQuotUliftAddEquiv, AddCommGrpCat.hasColimit_iff_small_quot

Equivalence

Theorems

NameKindAssumesProvesValidatesDepends On
quot_mk_eq_iff 📖Quotient.eq

Quot

Definitions

NameCategoryTheorems
factor 📖CompOp
1 mathmath: factor_mk_eq
hrecOn₂ 📖CompOp
instDecidableLiftOnOfDecidablePred_mathlib 📖CompOp
instDecidableLiftOn₂OfDecidablePred 📖CompOp
instInhabited_mathlib 📖CompOp
instUnique 📖CompOp
liftOn₂ 📖CompOp
1 mathmath: liftOn₂_mk
lift₂ 📖CompOp
1 mathmath: lift₂_mk
map 📖CompOp
2 mathmath: FreeAddGroup.quot_map_mk, FreeGroup.quot_map_mk
mapRight 📖CompOp
map₂ 📖CompOp
1 mathmath: map₂_mk
out 📖CompOp
9 mathmath: HomotopyCategory.quotient_map_out_comp_out, out_eq, Sym2.out_fst_mem, SimpleGraph.ConnectedComponent.Represents.image_out, Associates.mk_quot_out, HomotopyCategory.quotient_map_out, Associates.quot_out_zero, Sym2.out_snd_mem, Associates.quot_out
recOnSubsingleton₂ 📖CompOp
unquot 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
eq 📖mathematicalRelation.EqvGeneqvGen_exact
eqvGen_sound
factor_mk_eq 📖mathematicalfactor
induction_on 📖
induction_on₂ 📖
induction_on₃ 📖
liftOn_mk 📖
liftOn₂_mk 📖mathematicalliftOn₂
lift_mk 📖
lift₂_mk 📖mathematicallift₂
map₂_mk 📖mathematicalmap₂
mk_surjective 📖
out_eq 📖mathematicalout
surjective_lift 📖

Quot.lift

Definitions

NameCategoryTheorems
decidablePred 📖CompOp

Quot.lift₂

Definitions

NameCategoryTheorems
decidablePred 📖CompOp

Quotient

Definitions

NameCategoryTheorems
choice 📖CompOp
1 mathmath: choice_eq
eval 📖CompOp
3 mathmath: eval_finChoice, eval_mk, finChoiceEquiv_symm_apply
hrecOn' 📖CompOp
2 mathmath: hrecOn'_mk'', hrecOn₂'_mk''
hrecOn₂ 📖CompOp
hrecOn₂' 📖CompOp
1 mathmath: hrecOn₂'_mk''
instDecidableLiftOn'OfDecidablePred 📖CompOp
instDecidableLiftOnOfDecidablePred_mathlib 📖CompOp
instDecidableLiftOn₂'OfDecidablePred 📖CompOp
instDecidableLiftOn₂OfDecidablePred_mathlib 📖CompOp
instInhabitedQuotient 📖CompOp
instUniqueQuotient 📖CompOp
liftOn' 📖CompOp
10 mathmath: liftOn'_mk, liftOn'_mk'', Topology.IsQuotientMap.lift_apply, QuotientAddGroup.quotient_liftOn_mk, QuotientGroup.quotient_liftOn_mk, surjective_liftOn', Setoid.prodQuotientEquiv_symm_apply, Setoid.piQuotientEquiv_symm_apply, Set.range_quotient_lift_on', Continuous.quotient_liftOn'
liftOn₂' 📖CompOp
5 mathmath: liftOn₂'_mk, WellFounded.quotient_liftOn₂', acc_liftOn₂'_iff, liftOn₂'_mk'', wellFounded_liftOn₂'_iff
map 📖CompOp
3 mathmath: CategoryTheory.ThinSkeleton.map_map, CategoryTheory.ThinSkeleton.map_obj, map_mk
map' 📖CompOp
15 mathmath: AddSubgroup.quotientEquivProdOfLE_symm_apply, OrderHom.antisymmetrization_apply, Subgroup.quotientEquivProdOfLE_apply, OrderHom.coe_antisymmetrization, map₂'_mk'', Subgroup.quotientEquivProdOfLE_symm_apply, map'_mk, Subgroup.quotientEquivProdOfLE'_symm_apply, Continuous.quotient_map', AddSubgroup.quotientEquivProdOfLE'_apply, Subgroup.quotientEquivProdOfLE'_apply, AddSubgroup.quotientEquivProdOfLE'_symm_apply, AddSubgroup.quotientEquivProdOfLE_apply, map'_mk'', Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_smul
map₂ 📖CompOp
2 mathmath: Setoid.prodQuotientEquiv_apply, map₂_mk
map₂' 📖CompOp
1 mathmath: map₂'_mk''
mk'' 📖CompOp
51 mathmath: sound', AlternatingMap.domCoprod.summand_mk'', out_eq', AddSubgroup.IsComplement.quotientAddGroupMk_leftQuotientEquiv, AddCircle.equivIccQuot_comp_mk_eq_toIcoMod, liftOn'_mk'', Subgroup.quotientEquivProdOfLE_apply, Topology.IsQuotientMap.homeomorph_symm_apply, eq'', AddSubgroup.isComplement_addSubgroup_left_iff_bijective, AddSubgroup.IsComplement.mk''_rightQuotientEquiv, Subgroup.isComplement_subgroup_left_iff_existsUnique_quotientMk'', NumberField.InfinitePlace.orbitRelEquiv_apply_mk'', map₂'_mk'', CategoryTheory.Subobject.inf_eq_map_pullback', AddCircle.equivIccQuot_comp_mk_eq_toIocMod, HomogeneousLocalization.zero_eq, Set.Quotient.range_mk'', AddAction.orbitRel.Quotient.mem_orbit, Setoid.prodQuotientEquiv_symm_apply, Setoid.ker_mk_eq, AddSubgroup.isComplement_addSubgroup_left_iff_existsUnique_quotientMk'', mk''_surjective, Cycle.mk''_eq_coe, MulAction.orbitRel.Quotient.orbit_mk, HomogeneousLocalization.one_eq, Function.RightInverse.homeomorph_symm_apply, Setoid.piQuotientEquiv_symm_apply, measurable_from_quotient, Subgroup.isComplement_subgroup_left_iff_bijective, AddSubgroup.quotientEquivProdOfLE'_apply, Path.Homotopic.Quotient.mk''_eq_mk, Subgroup.IsComplement.mk''_rightQuotientEquiv, mk_out', Subgroup.quotientEquivProdOfLE'_apply, Setoid.piQuotientEquiv_apply, MulAction.orbitRel.Quotient.mem_orbit, AddSubgroup.quotientEquivProdOfLE_apply, CategoryTheory.Subobject.inf_eq_map_pullback, Setoid.quotientKerEquivOfRightInverse_symm_apply, map'_mk'', acc_liftOn₂'_iff, liftOn₂'_mk'', measurableSet_quotient, Submodule.Quotient.mk''_eq_mk, Setoid.comap_eq, AddAction.orbitRel.Quotient.orbit_mk, mk''_eq_mk, measurable_quotient_mk'', Subgroup.IsComplement.quotientGroupMk_leftQuotientEquiv, LieSubmodule.Quotient.is_quotient_mk
out 📖CompOp
69 mathmath: MulAction.Quotient.coe_smul_out, Setoid.ker_apply_mk_out, AddSubgroup.quotientEquivProdOfLE_symm_apply, out_eq', mk_eq_iff_out, QuotientAddGroup.univ_eq_iUnion_vadd, MulAction.quotient_out_smul_fixedPoints, CommRing.Pic.mul_eq_tensor, QuotientGroup.out_eq', Subgroup.quotientEquivProdOfLE_apply, Cardinal.mk_out, CategoryTheory.ThinSkeleton.fromThinSkeleton_map, AddAction.Quotient.coe_vadd_out, ZFSet.mk_out, out_injective, CategoryTheory.ThinSkeleton.fromThinSkeleton_obj, CategoryTheory.skeletonEquivalence_unitIso, MulAction.card_eq_sum_card_group_div_card_stabilizer, instInvertibleCarrierOutSemimoduleCatValSkeleton, out_equiv_out, CommRing.Pic.inv_eq_dual, outRelEmbedding_apply, CommRing.Pic.mk_eq_iff, QuotientGroup.univ_eq_iUnion_smul, CommRing.Pic.mk_eq_self, CommRing.Pic.mapAlgebra_apply, AddAction.Quotient.mk_vadd_out, CommRing.Pic.ext_iff, CommRing.Pic.instFreeAsModuleOfNat, Subgroup.quotientEquivProdOfLE_symm_apply, QuotientAddGroup.mk_out_eq_mul, QuotientGroup.mk_out_eq_mul, Subgroup.quotientEquivSigmaZMod_apply, CategoryTheory.fromSkeleton_obj, QuotientGroup.orbit_eq_out_smul, QuotientAddGroup.out_eq', MulAction.Quotient.mk_smul_out, CategoryTheory.fromSkeleton_map, Function.Embedding.coe_quotientOut, Subgroup.transferTransversal_apply', eq_mk_iff_out, Cardinal.nonempty_out, Ideal.Quotient.mk_out, CategoryTheory.Skeleton.comp_hom, QuotientAddGroup.orbit_eq_out_vadd, CategoryTheory.toSkeletonFunctor_map_hom, Submodule.Quotient.mk_out, Ideal.univ_eq_iUnion_image_add, Cardinal.out_lift_equiv, mk_out', Subgroup.transferFunction_apply, Setoid.piQuotientEquiv_apply, DoubleCoset.disjoint_out, out_inj, Subgroup.transferTransversal_apply'', AddSubgroup.quotientEquivProdOfLE_apply, AddAction.card_eq_sum_card_addGroup_sub_card_stabilizer, CategoryTheory.Skeleton.mul_eq, Subgroup.quotientEquivSigmaZMod_symm_apply, out_eq, DoubleCoset.out_eq', instInvertibleCarrierOutModuleCatValSkeleton, mk_out, IndexedPartition.index_out, MonoidHom.transfer_eq_prod_quotient_orbitRel_zpowers_quot, Cardinal.out_embedding, CategoryTheory.Skeleton.comp_hom_assoc, QuotientGroup.out_conj_pow_minimalPeriod_mem, DoubleCoset.mk_out_eq_mul
recOnSubsingleton' 📖CompOp
recOnSubsingleton₂' 📖CompOp
«term⟦_⟧» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
choice_eq 📖mathematicalchoice
piSetoid
mk_out
eq 📖
eq' 📖eq
eq'' 📖mathematicalmk''eq
eq_iff_equiv 📖eq
eq_mk_iff_out 📖mathematicaloutout_eq
eq
eval_mk 📖mathematicaleval
piSetoid
exact' 📖mk''
exists 📖
forall 📖
hrecOn'_mk'' 📖mathematicalmk''hrecOn'
hrecOn₂'_mk'' 📖mathematicalmk''hrecOn₂'
hrecOn'
ind' 📖mk''
inductionOn' 📖mk''
inductionOn₂' 📖mk''
inductionOn₃' 📖mk''
induction_on_pi 📖out_eq
ind₂' 📖mk''
instIsEquivEquiv 📖mathematicalIsEquiv
instSubsingletonQuotient 📖Quot.Subsingleton
liftOn'_mk 📖mathematicalliftOn'
liftOn'_mk'' 📖mathematicalliftOn'
mk''
liftOn_mk 📖
liftOn₂'_mk 📖mathematicalliftOn₂'
liftOn₂'_mk'' 📖mathematicalliftOn₂'
mk''
liftOn₂_mk 📖
lift_comp_mk 📖
lift_mk 📖
lift_surjective 📖Quot.surjective_lift
lift_surjective_iff 📖Quot.surjective_lift
lift₂_mk 📖
map'_mk 📖mathematicalmap'
map'_mk'' 📖mathematicalmap'
mk''
map_mk 📖mathematicalmap
map₂'_mk'' 📖mathematicalmap₂'
mk''
map'
map₂_mk 📖mathematicalmap₂
mk''_eq_mk 📖mathematicalmk''
mk''_surjective 📖mathematicalmk''
mk'_surjective 📖
mk_eq_iff_out 📖mathematicaloutout_eq
eq
mk_out 📖mathematicaloutout_eq
mk_out' 📖mathematicalout
mk''
out_eq
mk_surjective 📖
out_eq 📖mathematicaloutQuot.out_eq
out_eq' 📖mathematicalmk''
out
out_eq
out_equiv_out 📖mathematicalouteq_mk_iff_out
out_eq
out_inj 📖mathematicaloutout_injective
out_injective 📖mathematicaloutout_equiv_out
sound' 📖mathematicalmk''
surjective_liftOn' 📖mathematicalliftOn'Quot.surjective_lift

Quotient.lift

Definitions

NameCategoryTheorems
decidablePred 📖CompOp

Quotient.lift₂

Definitions

NameCategoryTheorems
decidablePred 📖CompOp

Setoid

Definitions

NameCategoryTheorems
instCoeFunForallForallProp_mathlib 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖

Trunc

Definitions

NameCategoryTheorems
bind 📖CompOp
instInhabited 📖CompOp
instMonad 📖CompOp
1 mathmath: instLawfulMonad
liftOn 📖CompOp
map 📖CompOp
3 mathmath: MultilinearMap.dfinsuppFamily_apply_support', DirectSum.addEquivProdDirectSum_symm_apply_support', finChoiceEquiv_symm_apply
mk 📖CompOp
out 📖CompOp
1 mathmath: out_eq
rec 📖CompOp
recOn 📖CompOp
recOnSubsingleton 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
eq 📖induction_on₂
exists_rep 📖
ind 📖
induction_on 📖ind
induction_on₂ 📖induction_on
instLawfulMonad 📖mathematicalTrunc
instMonad
eq
instSubsingletonTrunc 📖mathematicalTrunceq
lift_mk 📖mathematicallift
nonempty 📖exists_rep
out_eq 📖mathematicalouteq

(root)

Definitions

NameCategoryTheorems
piSetoid 📖CompOp
13 mathmath: Quotient.listChoice_mk, QuotientAddGroup.rightRel_pi, Quotient.finChoiceEquiv_apply, Setoid.piSetoid_apply, Quotient.eval_mk, Setoid.piQuotientEquiv_symm_apply, Quotient.choice_eq, Quotient.finChoice_eq, Setoid.piQuotientEquiv_apply, QuotientGroup.rightRel_pi, Quotient.finChoiceEquiv_symm_apply, QuotientAddGroup.leftRel_pi, QuotientGroup.leftRel_pi
trueSetoid 📖CompOp
2 mathmath: Trunc.finLiftOn_mk, Trunc.finRecOn_mk

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_quotient_iff 📖
true_equivalence 📖

---

← Back to Index