Documentation Verification Report

CharZero

πŸ“ Source: Mathlib/Data/Rat/Cast/CharZero.lean

Statistics

MetricCount
DefinitionsCharZero, castHom, castHom
3
Theoremscast_add, cast_div, cast_divNat, cast_eq_zero, cast_inj, cast_injective, cast_inv, cast_mul, cast_ne_zero, cast_zpow, coe_castHom, cast_add, cast_div, cast_divInt, cast_eq_zero, cast_inj, cast_injective, cast_inv, cast_mul, cast_ne_zero, cast_sub, cast_zpow, coe_castHom
23
Total26

NNRat

Definitions

NameCategoryTheorems
castHom πŸ“–CompOp
1 mathmath: coe_castHom

Theorems

NameKindAssumesProvesValidatesDepends On
cast_add πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
β€”cast_add_of_ne_zero
Nat.cast_ne_zero
LT.lt.ne'
den_pos
cast_div πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
instDiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
cast_divNat πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
divNat
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
β€”cast_natCast
cast_div
ext
cast_eq_zero πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
NNRat
Semifield.toDivisionSemiring
instSemifield
β€”cast_zero
cast_inj πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
β€”cast_injective
cast_injective πŸ“–mathematicalβ€”NNRat
cast
DivisionSemiring.toNNRatCast
β€”num_div_den
div_eq_div_iff
Nat.cast_zero
instCharZero
den_ne_zero
Commute.div_eq_div_iff
Nat.cast_commute
cast_def
cast_inv πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
β€”map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
cast_mul πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
β€”cast_mul_of_ne_zero
Nat.cast_ne_zero
LT.lt.ne'
den_pos
cast_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
cast_eq_zero
cast_zpow πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
instZPow
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”map_zpowβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coe_castHom πŸ“–mathematicalβ€”DFunLike.coe
RingHom
NNRat
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
RingHom.instFunLike
castHom
cast
DivisionSemiring.toNNRatCast
β€”β€”

Rat

Definitions

NameCategoryTheorems
castHom πŸ“–CompOp
12 mathmath: CongruenceSubgroup.exists_Gamma_le_conj', coe_castHom, castHom_rat, CongruenceSubgroup.IsArithmetic.conj, Padic.comap_mulValuation_eq_padicValuation, CongruenceSubgroup.isArithmetic_conj_SL2Z, CongruenceSubgroup.finiteIndex_conjGL, Padic.isUniformInducing_cast_withVal, Padic.coe_withValRingEquiv_symm, CongruenceSubgroup.IsCongruenceSubgroup.conjGL, Padic.isDenseInducing_cast_withVal, Subgroup.IsArithmetic.conj

Theorems

NameKindAssumesProvesValidatesDepends On
cast_add πŸ“–mathematicalβ€”DivisionRing.toRatCast
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”cast_add_of_ne_zero
Nat.cast_ne_zero
LT.lt.ne'
pos
cast_div πŸ“–mathematicalβ€”DivisionRing.toRatCast
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
cast_divInt πŸ“–mathematicalβ€”DivisionRing.toRatCast
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”cast_div
cast_intCast
cast_eq_zero πŸ“–mathematicalβ€”DivisionRing.toRatCast
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”cast_injective
cast_zero
cast_inj πŸ“–mathematicalβ€”DivisionRing.toRatCastβ€”cast_injective
cast_injective πŸ“–mathematicalβ€”DivisionRing.toRatCastβ€”Nat.cast_ne_zero
Int.cast_mul
Int.cast_natCast
eq_div_iff_mul_eq
division_def
mul_assoc
Commute.eq
Commute.inv_leftβ‚€
Nat.cast_commute
cast_divInt_of_ne_zero
cast_inv πŸ“–mathematicalβ€”DivisionRing.toRatCast
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
cast_mul πŸ“–mathematicalβ€”DivisionRing.toRatCast
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”cast_mul_of_ne_zero
Nat.cast_ne_zero
LT.lt.ne'
pos
cast_ne_zero πŸ“–β€”β€”β€”β€”Iff.ne
cast_eq_zero
cast_sub πŸ“–mathematicalβ€”DivisionRing.toRatCast
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”cast_sub_of_ne_zero
Nat.cast_ne_zero
LT.lt.ne'
pos
cast_zpow πŸ“–mathematicalβ€”DivisionRing.toRatCast
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
β€”map_zpowβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coe_castHom πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
RingHom.instFunLike
castHom
DivisionRing.toRatCast
β€”β€”

(root)

Definitions

NameCategoryTheorems
CharZero πŸ“–CompData
62 mathmath: WithTop.charZero, Polynomial.charZero, AddMonoidWithOne.toCharZero, Prod.charZero_of_right, CharZero.of_addMonoidHom, IntermediateField.charZero, Padic.instCharZero, algebraRat.charZero, ENNReal.instCharZero, RingHom.charZero, CharP.exists', charZero_of_inj_zero, Nat.instCharZero, CharP.ringChar_zero_iff_CharZero, MvPolynomial.instCharZero, RingHom.charZero_iff, CharZero.charZero_iff_forall_prime_ne_zero, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isComplex, NNRat.instCharZero, Cardinal.instCharZero, WithBot.charZero, Zsqrtd.instCharZero, CharP.charP_to_charZero, NumberField.RingOfIntegers.instCharZero, NumberField.finite_of_discr_bdd, RatFunc.instCharZero, Algebra.charZero_of_charZero, EqualCharZero.nonempty_algebraRat_iff, SubsemiringClass.instCharZero, Rat.instCharZero, QuadraticAlgebra.instCharZero, IsStrictOrderedRing.toCharZero, Polynomial.SplittingField.instCharZero, FreeAlgebra.charZero, EqualCharZero.iff_not_mixedCharZero, CharZero.of_isAddTorsionFree, NumberField.to_charZero, CharP.charP_zero_iff_charZero, instCharZeroOfIsSemireal, CyclotomicField.instCharZero, EqualCharZero.of_algebraRat, ZMod.charZero, charZero_of_expChar_one', Int.instCharZero, Prod.charZero_of_left, CharZero.of_module, RCLike.charZero_rclike, instCharZeroEReal, AlgebraicClosure.instCharZero, PartENat.instCharZero, NatOrdinal.instCharZero, NumberField.RingOfIntegers.instCharZero_1, charZero_of_injective_ringHom, charZero_of_injective_algebraMap, MixedCharZero.toCharZero, PadicInt.instCharZero, Complex.instCharZero, EqualCharZero.of_not_mixedCharZero, Ordinal.instCharZero, IsFractionRing.charZero, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isReal, IsFractionRing.charZero_of_isFractionRing

---

← Back to Index