Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Data/Rat/Cast/Defs.lean

Statistics

MetricCount
Definitions0
Theoremsext_nnrat, ext_nnrat', ext_nnrat_iff, ext_nnrat_on_pnat, ext_rat, ext_rat', ext_rat_iff, ext_rat_on_pnat, cast_add_of_ne_zero, cast_comm, cast_commute, cast_divNat_of_ne_zero, cast_div_of_ne_zero, cast_inv_of_ne_zero, cast_mul_of_ne_zero, cast_natCast, cast_ofNat, cast_one, cast_zero, commute_cast, subsingleton_ringHom, cast_add_of_ne_zero, cast_comm, cast_commute, cast_divInt_of_ne_zero, cast_div_of_ne_zero, cast_intCast, cast_inv_of_ne_zero, cast_mkRat_of_ne_zero, cast_mul_of_ne_zero, cast_natCast, cast_neg, cast_ofNat, cast_one, cast_sub_of_ne_zero, cast_zero, commute_cast, subsingleton_ringHom, ext_rat, eq_nnratCast, eq_ratCast, map_nnratCast, map_ratCast
43
Total43

MonoidWithZeroHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
ext_nnrat πŸ“–β€”MonoidWithZeroHom.comp
NNRat
Nat.instMulZeroOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
MonoidWithZero.toMulZeroOneClass
toMonoidWithZeroHom
RingHom
Nat.instNonAssocSemiring
RingHom.instFunLike
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Nat.castRingHom
β€”β€”RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ext_nnrat'
MonoidWithZeroHom.monoidWithZeroHomClass
DFunLike.congr_fun
ext_nnrat' πŸ“–β€”DFunLike.coe
NNRat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
β€”β€”DFunLike.ext
NNRat.num_div_den
div_eq_mul_inv
map_mul
MonoidHomClass.toMulHomClass
toMonoidHomClass
eq_on_invβ‚€
ext_nnrat_iff πŸ“–mathematicalβ€”MonoidWithZeroHom.comp
NNRat
Nat.instMulZeroOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
MonoidWithZero.toMulZeroOneClass
toMonoidWithZeroHom
RingHom
Nat.instNonAssocSemiring
RingHom.instFunLike
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Nat.castRingHom
β€”RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ext_nnrat
ext_nnrat_on_pnat πŸ“–β€”DFunLike.coe
NNRat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
β€”β€”ext_nnrat'
DFunLike.congr_fun
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ext_nat''
toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
ext_rat πŸ“–β€”MonoidWithZeroHom.comp
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Int.instSemiring
Rat.semiring
MonoidWithZero.toMulZeroOneClass
toMonoidWithZeroHom
RingHom
NonAssocRing.toNonAssocSemiring
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Rat.commRing
RingHom.instFunLike
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Int.castRingHom
β€”β€”RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ext_rat'
MonoidWithZeroHom.monoidWithZeroHomClass
DFunLike.congr_fun
ext_rat' πŸ“–β€”DFunLike.coeβ€”β€”DFunLike.ext
Rat.num_div_den
div_eq_mul_inv
map_mul
MonoidHomClass.toMulHomClass
toMonoidHomClass
Int.cast_natCast
eq_on_invβ‚€
ext_rat_iff πŸ“–mathematicalβ€”MonoidWithZeroHom.comp
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Int.instSemiring
Rat.semiring
MonoidWithZero.toMulZeroOneClass
toMonoidWithZeroHom
RingHom
NonAssocRing.toNonAssocSemiring
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Rat.commRing
RingHom.instFunLike
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Int.castRingHom
β€”RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ext_rat
ext_rat_on_pnat πŸ“–β€”DFunLike.coeβ€”β€”ext_rat'
DFunLike.congr_fun
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ext_int'
MonoidWithZeroHom.monoidWithZeroHomClass
Int.cast_neg
Int.cast_one
Int.cast_natCast

NNRat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_add_of_ne_zero πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
β€”add_def
cast_divNat_of_ne_zero
Nat.cast_mul
mul_ne_zero
GroupWithZero.noZeroDivisors
cast_def
mul_comm
Commute.div_add_div
Nat.commute_cast
Nat.cast_add
cast_comm πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
cast
DivisionSemiring.toNNRatCast
β€”cast_commute
cast_commute πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
cast
DivisionSemiring.toNNRatCast
β€”cast_def
Commute.div_left
Nat.cast_commute
cast_divNat_of_ne_zero πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
divNat
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
β€”CanLift.prf
instCanLiftIntNatCastLeOfNat
Rat.den_dvd
Nat.cast_mul
MulZeroClass.zero_mul
Nat.cast_zero
cast_def
Commute.div_eq_div_iff
Nat.commute_cast
cast_div_of_ne_zero πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
instDiv
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”div_def
cast_divNat_of_ne_zero
Nat.cast_mul
mul_ne_zero
GroupWithZero.noZeroDivisors
cast_def
div_eq_mul_inv
inv_div
Commute.div_mul_div_comm
Nat.commute_cast
cast_inv_of_ne_zero πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
β€”inv_def
cast_divNat_of_ne_zero
cast_def
inv_div
cast_mul_of_ne_zero πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
β€”mul_def
cast_divNat_of_ne_zero
Nat.cast_mul
mul_ne_zero
GroupWithZero.noZeroDivisors
cast_def
Commute.div_mul_div_comm
Nat.commute_cast
cast_natCast πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
β€”cast_def
Nat.cast_one
div_one
cast_ofNat πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
β€”cast_natCast
cast_one πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
β€”cast_natCast
Nat.cast_one
cast_zero πŸ“–mathematicalβ€”cast
DivisionSemiring.toNNRatCast
NNRat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
β€”cast_natCast
Nat.cast_zero
commute_cast πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
cast
DivisionSemiring.toNNRatCast
β€”Commute.symm
cast_commute
subsingleton_ringHom πŸ“–mathematicalβ€”RingHom
NNRat
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
β€”MonoidWithZeroHomClass.ext_nnrat'
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_natCast

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_add_of_ne_zero πŸ“–mathematicalβ€”DivisionRing.toRatCast
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”cast_mkRat_of_ne_zero
Nat.cast_mul
mul_ne_zero
IsDomain.to_noZeroDivisors
DivisionRing.isDomain
cast_def
mul_comm
Commute.div_add_div
Nat.cast_commute
Nat.commute_cast
Int.cast_add
Int.cast_mul
Int.cast_natCast
cast_comm πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
DivisionRing.toRatCast
β€”Commute.eq
cast_commute
cast_commute πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
DivisionRing.toRatCast
β€”cast_def
Commute.div_left
Int.cast_commute
Nat.cast_commute
cast_divInt_of_ne_zero πŸ“–mathematicalβ€”DivisionRing.toRatCast
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”Int.cast_zero
den_dvd
Int.cast_mul
Int.cast_natCast
MulZeroClass.zero_mul
ne_of_gt
Ne.bot_lt
cast_def
div_eq_mul_inv
eq_div_iff_mul_eq
mul_assoc
Commute.eq
Nat.commute_cast
mul_inv_cancelβ‚€
mul_one
cast_div_of_ne_zero πŸ“–mathematicalβ€”DivisionRing.toRatCast
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”div_def'
cast_divInt_of_ne_zero
Int.cast_mul
Int.cast_natCast
mul_ne_zero
IsDomain.to_noZeroDivisors
DivisionRing.isDomain
cast_def
div_eq_mul_inv
inv_div
Commute.div_mul_div_comm
Int.commute_cast
Nat.commute_cast
cast_intCast πŸ“–mathematicalβ€”DivisionRing.toRatCast
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”cast_def
Nat.cast_one
div_one
cast_inv_of_ne_zero πŸ“–mathematicalβ€”DivisionRing.toRatCast
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”cast_divInt_of_ne_zero
cast_def
inv_div
Int.cast_natCast
cast_mkRat_of_ne_zero πŸ“–mathematicalβ€”DivisionRing.toRatCast
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
β€”mkRat_eq_divInt
cast_divInt_of_ne_zero
Int.cast_natCast
cast_mul_of_ne_zero πŸ“–mathematicalβ€”DivisionRing.toRatCast
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”mul_eq_mkRat
cast_mkRat_of_ne_zero
Nat.cast_mul
mul_ne_zero
IsDomain.to_noZeroDivisors
DivisionRing.isDomain
cast_def
Commute.div_mul_div_comm
Nat.commute_cast
Int.commute_cast
Int.cast_mul
cast_natCast πŸ“–mathematicalβ€”DivisionRing.toRatCast
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”Int.cast_natCast
cast_intCast
cast_neg πŸ“–mathematicalβ€”DivisionRing.toRatCast
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
β€”cast_def
Int.cast_neg
neg_div
cast_ofNat πŸ“–mathematicalβ€”DivisionRing.toRatCastβ€”cast_def
Int.cast_ofNat
Nat.cast_one
div_one
cast_one πŸ“–mathematicalβ€”DivisionRing.toRatCast
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”cast_intCast
Int.cast_one
cast_sub_of_ne_zero πŸ“–mathematicalβ€”DivisionRing.toRatCast
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”sub_eq_add_neg
cast_add_of_ne_zero
cast_neg
cast_zero πŸ“–mathematicalβ€”DivisionRing.toRatCast
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”cast_intCast
Int.cast_zero
commute_cast πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
DivisionRing.toRatCast
β€”Commute.symm
cast_commute
subsingleton_ringHom πŸ“–mathematicalβ€”RingHom
Semiring.toNonAssocSemiring
semiring
β€”RingHom.ext_rat
RingHom.instRingHomClass

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
ext_rat πŸ“–β€”β€”β€”β€”MonoidWithZeroHomClass.ext_rat'
RingHomClass.toMonoidWithZeroHomClass
congr_fun
ext_int

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
eq_nnratCast πŸ“–mathematicalβ€”DFunLike.coe
NNRat
NNRat.cast
DivisionSemiring.toNNRatCast
β€”map_nnratCast
NNRat.cast_id
eq_ratCast πŸ“–mathematicalβ€”DFunLike.coe
DivisionRing.toRatCast
β€”map_ratCast
Rat.cast_id
map_nnratCast πŸ“–mathematicalβ€”DFunLike.coe
NNRat.cast
DivisionSemiring.toNNRatCast
β€”NNRat.cast_def
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
map_natCast
map_ratCast πŸ“–mathematicalβ€”DFunLike.coe
DivisionRing.toRatCast
β€”Rat.cast_def
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
map_intCast
map_natCast

---

← Back to Index