Documentation Verification Report

Defs

📁 Source: Mathlib/Data/Rat/Defs.lean

Statistics

MetricCount
DefinitionsaddCommGroup, addCommMonoid, addCommSemigroup, addGroup, addLeftCancelSemigroup, addMonoid, addRightCancelSemigroup, addSemigroup, commMonoid, commSemigroup, divCasesOn, monoid, semigroup
13
Theoremsadd_divInt, canLift, coe_int_inj, coe_int_num_of_den_eq_one, den_eq_one_iff, den_ne_zero, den_neg_eq_den, den_one, den_zero, divInt_div_divInt, divInt_eq_divInt, divInt_eq_zero, divInt_mul_divInt_cancel, divInt_ne_zero, divInt_ne_zero_of_ne_zero, divInt_neg, divInt_one, divInt_one_one, div_def', eq_iff_mul_eq_mul, eq_num_of_isInt, intCast_div_eq_divInt, intCast_eq_divInt, intCast_eq_one, intCast_eq_one_iff, intCast_eq_zero, intCast_injective, inv_def', inv_divInt', inv_mkRat, lift_binop_eq, mk'_mul_mk', mk'_num_den, mk'_pow, mk'_zero, mkRat_eq_divInt, mkRat_num_den', mk_denom_ne_zero_of_ne_zero, mk_num_ne_zero_of_ne_zero, mul_eq_mkRat, natCast_div_eq_divInt, natCast_eq_one, natCast_eq_one_iff, natCast_eq_zero, natCast_injective, neg_def, nontrivial, num_ne_zero, num_neg_eq_neg_num, num_one, num_zero, ofInt_eq_cast, pos, pow_eq_divInt, pow_eq_mkRat, zero_iff_num_zero, zero_ne_one, zero_of_num_zero
58
Total71

Rat

Definitions

NameCategoryTheorems
addCommGroup 📖CompOp
9 mathmath: CharacterModule.int.divByNat_self, CharacterModule.smul_apply, CharacterModule.instLinearMapClassIntAddCircleRatOfNat, CharacterModule.curry_apply_apply, CharacterModule.ext_iff, CharacterModule.homEquiv_symm_apply_apply_apply, CharacterModule.uncurry_apply, CharacterModule.homEquiv_apply_apply, CharacterModule.dual_apply
addCommMonoid 📖CompOp
33 mathmath: cast_finsupp_sum, Polynomial.bernoulli_succ_eval, NNRat.toNNRat_sum_of_nonneg, Matrix.map_mul_ratCast, Subgroup.leftCoset_cover_filter_FiniteIndex_aux, Polynomial.sum_range_pow_eq_bernoulli_sub, AhlswedeZhang.IsAntichain.le_infSum, bernoulli_spec', bernoulli'_spec, instIsOrderedAddMonoid, bernoulli'_spec', sum_Ico_pow, padicValRat.sum_pos_of_pos, AhlswedeZhang.infSum_compls_add_supSum, sum_bernoulli', Subgroup.one_le_sum_inv_index_of_leftCoset_cover, padicNorm.sum_lt, AhlswedeZhang.supSum_of_univ_notMem, cast_sum, AddSubgroup.one_le_sum_inv_index_of_leftCoset_cover, padicValRat.lt_sum_of_lt, harmonic_eq_sum_Icc, AhlswedeZhang.supSum_singleton, sum_range_pow, instArchimedeanRat, bernoulli'_def, AddSubgroup.leftCoset_cover_filter_FiniteIndex_aux, cast_multiset_sum, bernoulli'_def', sum_bernoulli, padicNorm.sum_le, padicNorm.sum_le', padicNorm.sum_lt'
addCommSemigroup 📖CompOp
addGroup 📖CompOp
75 mathmath: Real.ofCauchy_sup, NNRat.abs_coe, NumberField.mixedEmbedding.norm_eq_norm, coe_nnabs, NumberField.FinitePlace.prod_eq_inv_abs_norm, Real.ofCauchy_zero, NumberField.Units.dirichletUnitTheorem.seq_next, Real.of_near, Real.ofCauchy_mul, Real.cauchy_sub, Real.mk_one, num_abs_eq_abs_num, Real.ofCauchy_nnratCast, NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_of_norm_le, Real.lt_cauchy, finite_rat_abs_sub_lt_one_div_den_sq, NumberField.det_basisOfFractionalIdeal_eq_absNorm, Real.ofCauchy_sub, Real.mk_lt, NumberField.Units.norm, SimpleGraph.nonuniformWitnesses_spec, Real.mk_mul, Real.cauchy_inv, Real.cauchy_nnratCast, Real.mk_add, AddSubgroup.relIndex_eq_abs_det, SimpleGraph.not_isUniform_iff, uniformContinuous_abs, Real.ofCauchy_natCast, Real.cauchy_natCast, FractionalIdeal.absNorm_span_singleton, Real.ofCauchy_ratCast, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le, den_abs_eq_den, Real.ofCauchy_intCast, Real.ofCauchy_div, cast_abs, abs_def, Real.cauchy_neg, Real.mk_const, Rel.abs_edgeDensity_sub_edgeDensity_le_one_sub_mul, Real.cauchy_intCast, Real.mk_zero, Real.cauchy_add, Real.ofCauchy_add, Real.ofCauchy_inv, NumberField.exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, Real.cauchy_zero, Real.ofCauchy_neg, SimpleGraph.nonuniformWitness_spec, infinitePlace_apply, Real.mk_inf, Real.mk_eq, instIsUniformAddGroup, Real.ofCauchy_one, NumberField.isUnit_iff_norm, FractionalIdeal.abs_det_basis_change, AbsoluteValue.real_eq_abs, Real.mk_sup, sqrt_eq, Real.cauchy_one, Real.cauchy_ratCast, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, Real.cauchy_mul, Real.ringEquivCauchy_apply, Real.mk_neg, NumberField.InfinitePlace.prod_eq_abs_norm, instIsTopologicalAddGroup, NumberField.InfinitePlace.Completion.Rat.norm_infinitePlace_completion, Real.mk_le, Real.ringEquivCauchy_symm_apply_cauchy, Real.isCauSeq_iff_lift, abs_def', Real.ofCauchy_inf
addLeftCancelSemigroup 📖CompOp
addMonoid 📖CompOp
4 mathmath: addSubmonoid_closure_range_pow, RootPairing.linearIndepOn_root_baseOf, addSubmonoid_closure_range_mul_self, NNRat.nsmul_coe
addRightCancelSemigroup 📖CompOp
addSemigroup 📖CompOp
commMonoid 📖CompOp
6 mathmath: Nat.totient_eq_mul_prod_factors, cast_finsuppProd, cast_multiset_prod, NNRat.toNNRat_prod_of_nonneg, commProb_pi, cast_prod
commSemigroup 📖CompOp
divCasesOn 📖CompOp
monoid 📖CompOp
17 mathmath: Nat.ratSqrt_sq_le, StarAddMonoid.toStarModuleRat, IsNilpotent.exp_smul_eq_sum, finite_rat_abs_sub_lt_one_div_den_sq, IsScalarTower.rat, SMulCommClass.rat', star_qsmul, Algebra.TensorProduct.instCompatibleSMulRat, cast_smul_eq_qsmul, IsNilpotent.exp_eq_sum, Nat.lt_ratSqrt_add_inv_prec_sq, Subgroup.commProb_subgroup_le, Matrix.conjTranspose_rat_smul, map_rat_smul, star_rat_smul, commProb_def, SMulCommClass.rat
semigroup 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
add_divInt 📖add_zero
canLift 📖mathematicalCanLiftcoe_int_num_of_den_eq_one
coe_int_inj 📖
coe_int_num_of_den_eq_one 📖intCast_eq_divInt
den_eq_one_iff 📖coe_int_num_of_den_eq_one
den_ne_zero 📖LT.lt.ne'
den_neg_eq_den 📖
den_one 📖
den_zero 📖
divInt_div_divInt 📖
divInt_eq_divInt 📖
divInt_eq_zero 📖
divInt_mul_divInt_cancel 📖
divInt_ne_zero 📖Iff.not
divInt_eq_zero
divInt_ne_zero_of_ne_zero 📖divInt_ne_zero
divInt_neg 📖
divInt_one 📖
divInt_one_one 📖divInt_one
div_def' 📖divInt_div_divInt
eq_iff_mul_eq_mul 📖
eq_num_of_isInt 📖coe_int_num_of_den_eq_one
isInt.eq_1
intCast_div_eq_divInt 📖
intCast_eq_divInt 📖
intCast_eq_one 📖intCast_eq_one_iff
intCast_eq_one_iff 📖
intCast_eq_zero 📖
intCast_injective 📖
inv_def' 📖
inv_divInt' 📖
inv_mkRat 📖mkRat_eq_divInt
lift_binop_eq 📖
mk'_mul_mk' 📖
mk'_num_den 📖
mk'_pow 📖
mk'_zero 📖
mkRat_eq_divInt 📖
mkRat_num_den' 📖
mk_denom_ne_zero_of_ne_zero 📖
mk_num_ne_zero_of_ne_zero 📖
mul_eq_mkRat 📖
natCast_div_eq_divInt 📖intCast_div_eq_divInt
natCast_eq_one 📖natCast_eq_one_iff
natCast_eq_one_iff 📖
natCast_eq_zero 📖
natCast_injective 📖intCast_injective
neg_def 📖
nontrivial 📖mathematicalNontrivial
num_ne_zero 📖Iff.not
num_neg_eq_neg_num 📖
num_one 📖
num_zero 📖
ofInt_eq_cast 📖
pos 📖
pow_eq_divInt 📖
pow_eq_mkRat 📖
zero_iff_num_zero 📖zero_of_num_zero
zero_ne_one 📖divInt_one_one
divInt_ne_zero
zero_of_num_zero 📖

---

← Back to Index