Documentation Verification Report

Floor

πŸ“ Source: Mathlib/Data/Rat/Floor.lean

Statistics

MetricCount
DefinitionsevalIntCeil, evalIntFloor, evalIntFract, evalRound, instFloorRing
5
Theoremsmod_nat_eq_sub_mul_floor_rat_div, coprime_sub_mul_floor_rat_div_of_coprime, isInt_round, cast_fract, ceil_cast, ceil_def', ceil_intCast_div_natCast, ceil_natCast_div_natCast, den_intFract, floor_cast, floor_def', floor_intCast_div_natCast, floor_natCast_div_natCast, fract_inv_num_lt_num_of_pos, isInt_intCeil, isInt_intCeil_ofIsRat_neg, isInt_intFloor, isInt_intFloor_ofIsRat_neg, isInt_round, isNNRat_intFract_of_isNNRat, isNat_intCeil, isNat_intCeil_ofIsNNRat, isNat_intFloor, isNat_intFloor_ofIsNNRat, isNat_intFract_of_isInt, isNat_intFract_of_isNat, isNat_round, isRat_intFract_of_isRat_negOfNat, le_floor, natFloor_natCast_div_natCast, num_lt_succ_floor_mul_den, round_cast
32
Total37

Int

Theorems

NameKindAssumesProvesValidatesDepends On
mod_nat_eq_sub_mul_floor_rat_div πŸ“–mathematicalβ€”floor
DivisionRing.toRing
Rat.instDivisionRing
Rat.linearOrder
Rat.instFloorRing
β€”Rat.floor_intCast_div_natCast

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
coprime_sub_mul_floor_rat_div_of_coprime πŸ“–mathematicalβ€”Int.floor
DivisionRing.toRing
Rat.instDivisionRing
Rat.linearOrder
Rat.instFloorRing
β€”Int.mod_nat_eq_sub_mul_floor_rat_div

Rat

Definitions

NameCategoryTheorems
evalIntCeil πŸ“–CompOpβ€”
evalIntFloor πŸ“–CompOpβ€”
evalIntFract πŸ“–CompOpβ€”
evalRound πŸ“–CompOpβ€”
instFloorRing πŸ“–CompOp
45 mathmath: num_lt_succ_floor_mul_den, NNRat.coe_floor, GenContFract.IntFractPair.coe_stream_nth_rat_eq, GenContFract.coe_of_h_rat_eq, GenContFract.coe_of_s_rat_eq, cast_fract, ceil_intCast_div_natCast, NNRat.floor_coe, GenContFract.of_terminates_iff_of_rat_terminates, GenContFract.IntFractPair.coe_stream'_rat_eq, GenContFract.IntFractPair.exists_nth_stream_eq_none_of_rat, floor_natCast_div_natCast, round_cast, NNRat.intCeil_cast, floor_cast, GenContFract.IntFractPair.coe_of_rat_eq, GenContFract.coe_of_rat_eq, NNRat.coe_ceil, Nat.Ioc_filter_modEq_card, ceil_natCast_div_natCast, Int.Ioc_filter_modEq_card, GenContFract.IntFractPair.of_inv_fr_num_lt_num_of_pos, Nat.Ico_filter_modEq_card, natFloor_natCast_div_natCast, GaussianInt.div_def, Int.Ico_filter_dvd_card, GenContFract.coe_of_s_get?_rat_eq, fract_inv_num_lt_num_of_pos, den_le_and_le_num_le_of_sub_lt_one_div_den_sq, Nat.coprime_sub_mul_floor_rat_div_of_coprime, NNRat.ceil_coe, floor_def', Int.Ico_filter_modEq_card, Int.Ioc_filter_dvd_eq, ceil_cast, GenContFract.terminates_of_rat, Nat.count_modEq_card_eq_ceil, NNRat.intFloor_cast, den_intFract, Int.mod_nat_eq_sub_mul_floor_rat_div, Int.Ico_filter_dvd_eq, floor_intCast_div_natCast, Int.Ioc_filter_dvd_card, ceil_def', niven_fract_angle_div_pi_eq

Theorems

NameKindAssumesProvesValidatesDepends On
cast_fract πŸ“–mathematicalβ€”DivisionRing.toRatCast
Field.toDivisionRing
Int.fract
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”cast_sub
IsStrictOrderedRing.toCharZero
cast_intCast
floor_cast
ceil_cast πŸ“–mathematicalβ€”Int.ceil
DivisionRing.toRing
Field.toDivisionRing
DivisionRing.toRatCast
instDivisionRing
linearOrder
instFloorRing
β€”Int.floor_neg
instIsStrictOrderedRing
cast_neg
floor_cast
ceil_def' πŸ“–mathematicalβ€”Int.ceil
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”floor_def'
num_neg_eq_neg_num
den_neg_eq_den
ceil_intCast_div_natCast πŸ“–mathematicalβ€”Int.ceil
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”neg_neg
Int.floor_neg
instIsStrictOrderedRing
neg_div
Int.cast_neg
floor_intCast_div_natCast
ceil_natCast_div_natCast πŸ“–mathematicalβ€”Int.ceil
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”ceil_intCast_div_natCast
den_intFract πŸ“–mathematicalβ€”Int.fract
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”sub_intCast_den
floor_cast πŸ“–mathematicalβ€”Int.floor
DivisionRing.toRing
Field.toDivisionRing
DivisionRing.toRatCast
instDivisionRing
linearOrder
instFloorRing
β€”Int.floor_eq_iff
Nat.cast_one
Int.cast_one
floor_def' πŸ“–mathematicalβ€”Int.floor
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”β€”
floor_intCast_div_natCast πŸ“–mathematicalβ€”Int.floor
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”floor_def'
eq_zero_or_pos
Nat.instCanonicallyOrderedAdd
Nat.cast_zero
div_zero
Nat.cast_one
instCharZero
Int.cast_natCast
exists_eq_mul_div_num_and_eq_mul_div_den
Int.instCharZero
LT.lt.ne'
pos_of_mul_pos_left
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Int.instIsStrictOrderedRing
floor_natCast_div_natCast πŸ“–mathematicalβ€”Int.floor
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”floor_intCast_div_natCast
fract_inv_num_lt_num_of_pos πŸ“–mathematicalβ€”Int.fract
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”num_pos
LT.lt.le
Int.cast_natCast
num_lt_succ_floor_mul_den
one_mul
right_distrib
Distrib.rightDistribClass
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
instCharZero
num_div_eq_of_coprime
den_div_eq_of_coprime
Int.instCharZero
mul_comm
Nat.coprime_sub_mul_floor_rat_div_of_coprime
Nat.cast_natAbs
abs_of_nonneg
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Int.cast_pos
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
IsOrderedRing.toZeroLEOneClass
NeZero.one
nontrivial
Mathlib.Meta.Positivity.num_pos_of_pos
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
isInt_intCeil πŸ“–mathematicalMathlib.Meta.NormNum.IsIntInt.instRing
Int.ceil
β€”Int.ceil_intCast
isInt_intCeil_ofIsRat_neg πŸ“–mathematicalMathlib.Meta.NormNum.IsRat
DivisionRing.toRing
Field.toDivisionRing
Mathlib.Meta.NormNum.IsInt
Int.instRing
Int.ceil
β€”invOf_eq_inv
floor_natCast_div_natCast
neg_neg
ceil_intCast_div_natCast
ceil_cast
cast_div
IsStrictOrderedRing.toCharZero
cast_intCast
cast_natCast
isInt_intFloor πŸ“–mathematicalMathlib.Meta.NormNum.IsIntInt.instRing
Int.floor
β€”Int.floor_intCast
isInt_intFloor_ofIsRat_neg πŸ“–mathematicalMathlib.Meta.NormNum.IsRat
DivisionRing.toRing
Field.toDivisionRing
Mathlib.Meta.NormNum.IsInt
Int.instRing
Int.floor
β€”invOf_eq_inv
ceil_intCast_div_natCast
Int.cast_natCast
Int.ceil_nonneg
instIsStrictOrderedRing
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_nonneg
IsStrictOrderedRing.toIsOrderedRing
neg_neg
floor_intCast_div_natCast
floor_cast
cast_div
IsStrictOrderedRing.toCharZero
cast_intCast
cast_natCast
isInt_round πŸ“–mathematicalMathlib.Meta.NormNum.IsIntInt.instRing
round
β€”round_intCast
isNNRat_intFract_of_isNNRat πŸ“–mathematicalMathlib.Meta.NormNum.IsNNRat
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Int.fract
DivisionRing.toRing
Field.toDivisionRing
β€”invOf_eq_inv
Int.fract_div_natCast_eq_div_natCast_mod
isNat_intCeil πŸ“–mathematicalMathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
Int.ceil
β€”Int.ceil_natCast
isNat_intCeil_ofIsNNRat πŸ“–mathematicalMathlib.Meta.NormNum.IsNNRat
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Mathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
Int.ceil
DivisionRing.toRing
Field.toDivisionRing
β€”invOf_eq_inv
ceil_intCast_div_natCast
ceil_cast
cast_div
IsStrictOrderedRing.toCharZero
cast_intCast
cast_natCast
Int.cast_natCast
Int.ceil_nonneg
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_nonneg
IsStrictOrderedRing.toIsOrderedRing
isNat_intFloor πŸ“–mathematicalMathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
Int.floor
β€”Int.floor_natCast
isNat_intFloor_ofIsNNRat πŸ“–mathematicalMathlib.Meta.NormNum.IsNNRat
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Mathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
Int.floor
DivisionRing.toRing
Field.toDivisionRing
β€”invOf_eq_inv
floor_natCast_div_natCast
floor_cast
cast_div
IsStrictOrderedRing.toCharZero
cast_natCast
isNat_intFract_of_isInt πŸ“–mathematicalMathlib.Meta.NormNum.IsIntMathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.fract
β€”Int.fract_intCast
Nat.cast_zero
isNat_intFract_of_isNat πŸ“–mathematicalMathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.fractβ€”Int.fract_natCast
Nat.cast_zero
isNat_round πŸ“–mathematicalMathlib.Meta.NormNum.IsNat
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
round
β€”round_natCast
isRat_intFract_of_isRat_negOfNat πŸ“–mathematicalMathlib.Meta.NormNum.IsRat
DivisionRing.toRing
Field.toDivisionRing
Int.fractβ€”invOf_eq_inv
Int.fract_div_intCast_eq_div_intCast_mod
le_floor πŸ“–β€”β€”β€”β€”intCast_eq_divInt
divInt_le_divInt
zero_lt_one
Int.instZeroLEOneClass
mul_one
natFloor_natCast_div_natCast πŸ“–mathematicalβ€”Nat.floor
semiring
instPartialOrder
FloorRing.toFloorSemiring
DivisionRing.toRing
instDivisionRing
linearOrder
instIsStrictOrderedRing
instFloorRing
β€”instIsStrictOrderedRing
Int.natCast_floor_eq_floor
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_nonneg'
instAddLeftMono
instZeroLEOneClass
floor_intCast_div_natCast
num_lt_succ_floor_mul_den πŸ“–mathematicalβ€”Int.floor
DivisionRing.toRing
instDivisionRing
linearOrder
instFloorRing
β€”Int.fract_lt_one
instIsStrictOrderedRing
zero_add
lt_sub_iff_add_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
instAddLeftMono
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_zero
instZeroLEOneClass
instCharZero
pos
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sub_self
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.zero_mul
add_mul
Distrib.rightDistribClass
mul_den_eq_num
eq_sub_of_add_eq
Int.floor_add_fract
Nat.cast_one
Int.cast_one
Int.cast_natCast
NeZero.charZero_one
round_cast πŸ“–mathematicalβ€”round
DivisionRing.toRing
Field.toDivisionRing
DivisionRing.toRatCast
instDivisionRing
linearOrder
instFloorRing
β€”Nat.instAtLeastTwoHAddOfNat
one_div
cast_add
IsStrictOrderedRing.toCharZero
cast_inv
cast_ofNat
round_eq
instIsStrictOrderedRing
floor_cast

Rat.IsRat

Theorems

NameKindAssumesProvesValidatesDepends On
isInt_round πŸ“–mathematicalround
DivisionRing.toRing
Rat.instDivisionRing
Rat.linearOrder
Rat.instFloorRing
Mathlib.Meta.NormNum.IsRat
Field.toDivisionRing
Mathlib.Meta.NormNum.IsInt
Int.instRing
β€”invOf_eq_inv
div_eq_mul_inv
Int.cast_natCast
IsStrictOrderedRing.toCharZero
Rat.round_cast
Rat.instCharZero
Rat.instIsStrictOrderedRing

---

← Back to Index