Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Data/Rat/NatSqrt/Defs.lean

Statistics

MetricCount
DefinitionsratSqrt
1
Theoremslt_ratSqrt_add_inv_prec_sq, ratSqrt_nonneg, ratSqrt_sq_le
3
Total4

Nat

Definitions

NameCategoryTheorems
ratSqrt πŸ“–CompOp
7 mathmath: ratSqrt_sq_le, ratSqrt_nonneg, realSqrt_mem_Ico, realSqrt_lt_ratSqrt_add_inv_prec, lt_ratSqrt_add_inv_prec_sq, ratSqrt_mem_Ioc, ratSqrt_le_realSqrt

Theorems

NameKindAssumesProvesValidatesDepends On
lt_ratSqrt_add_inv_prec_sq πŸ“–mathematicalβ€”Monoid.toNatPow
Rat.monoid
ratSqrt
β€”mul_lt_mul_iff_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Rat.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
cast_pos'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.one
Rat.nontrivial
mul_pow
add_mul
Distrib.rightDistribClass
div_mul_cancelβ‚€
cast_zero
Rat.instCharZero
ne_of_gt
cast_one
lt_succ_sqrt'
ratSqrt_nonneg πŸ“–mathematicalβ€”ratSqrtβ€”div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
cast_nonneg'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
ratSqrt_sq_le πŸ“–mathematicalβ€”Monoid.toNatPow
Rat.monoid
ratSqrt
β€”div_pow
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
cast_pos'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.one
Rat.nontrivial
Rat.instCharZero
sqrt_le'

---

← Back to Index