Documentation Verification Report

Star

πŸ“ Source: Mathlib/Data/Rat/Star.lean

Statistics

MetricCount
Definitions0
TheoremsaddSubmonoid_closure_range_mul_self, addSubmonoid_closure_range_pow, instStarOrderedRing, addSubmonoid_closure_range_mul_self, addSubmonoid_closure_range_pow, instStarOrderedRing
6
Total6

NNRat

Theorems

NameKindAssumesProvesValidatesDepends On
addSubmonoid_closure_range_mul_self πŸ“–mathematicalβ€”AddSubmonoid.closure
NNRat
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
Set.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Top.top
AddSubmonoid
AddSubmonoid.instTop
β€”sq
addSubmonoid_closure_range_pow
two_ne_zero
addSubmonoid_closure_range_pow πŸ“–mathematicalβ€”AddSubmonoid.closure
NNRat
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
Set.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Top.top
AddSubmonoid
AddSubmonoid.instTop
β€”AddSubmonoid.eq_top_iff'
nsmul_eq_mul
Nat.cast_mul
Nat.cast_pow
mul_assoc
pow_subβ‚€
instCharZero
LT.lt.ne'
den_pos
pow_one
mul_right_comm
mul_pow
mul_inv_cancelβ‚€
one_pow
one_mul
div_eq_mul_inv
num_div_den
nsmul_mem
AddSubmonoid.instAddSubmonoidClass
AddSubmonoid.subset_closure
Set.mem_range_self
instStarOrderedRing πŸ“–mathematicalβ€”StarOrderedRing
NNRat
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
instCommSemiringNNRat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
instStarRing
β€”le_iff_exists_nonneg_add
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRingNNRat
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
TrivialStar.star_trivial
instTrivialStar
addSubmonoid_closure_range_mul_self

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
addSubmonoid_closure_range_mul_self πŸ“–mathematicalβ€”AddSubmonoid.closure
AddMonoid.toAddZeroClass
addMonoid
Set.range
AddSubmonoid.nonneg
instPreorder
instAddLeftMono
β€”instAddLeftMono
sq
addSubmonoid_closure_range_pow
two_ne_zero
even_two
addSubmonoid_closure_range_pow πŸ“–mathematicalEvenAddSubmonoid.closure
AddMonoid.toAddZeroClass
addMonoid
Set.range
AddSubmonoid.nonneg
instPreorder
instAddLeftMono
β€”instAddLeftMono
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Even.pow_abs
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Set.image_congr
eq_nnratCast
Set.instReflSubset
Set.instAntisymmSubset
AddSubmonoid.ext
AddSubmonoid.map.congr_simp
NNRat.addSubmonoid_closure_range_pow
AddMonoidHom.map_mclosure
instStarOrderedRing πŸ“–mathematicalβ€”StarOrderedRing
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
instPartialOrder
instStarRing
β€”le_iff_exists_nonneg_add
AddGroup.existsAddOfLE
instAddLeftMono
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
TrivialStar.star_trivial
instTrivialStar
addSubmonoid_closure_range_mul_self

---

← Back to Index