π Source: Mathlib/Data/Rat/Star.lean
addSubmonoid_closure_range_mul_self
addSubmonoid_closure_range_pow
instStarOrderedRing
AddSubmonoid.closure
NNRat
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
Set.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Top.top
AddSubmonoid
AddSubmonoid.instTop
sq
two_ne_zero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddSubmonoid.eq_top_iff'
nsmul_eq_mul
Nat.cast_mul
Nat.cast_pow
mul_assoc
pow_subβ
instCharZero
LT.lt.ne'
den_pos
pow_one
mul_right_comm
mul_pow
mul_inv_cancelβ
one_pow
one_mul
div_eq_mul_inv
num_div_den
nsmul_mem
AddSubmonoid.instAddSubmonoidClass
AddSubmonoid.subset_closure
Set.mem_range_self
StarOrderedRing
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
instCommSemiringNNRat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
instStarRing
le_iff_exists_nonneg_add
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRingNNRat
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
TrivialStar.star_trivial
instTrivialStar
addMonoid
AddSubmonoid.nonneg
instPreorder
instAddLeftMono
even_two
Even
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Even.pow_abs
instIsStrictOrderedRing
Set.image_congr
eq_nnratCast
Set.instReflSubset
Set.instAntisymmSubset
AddSubmonoid.ext
AddSubmonoid.map.congr_simp
NNRat.addSubmonoid_closure_range_pow
AddMonoidHom.map_mclosure
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
instPartialOrder
AddGroup.existsAddOfLE
---
β Back to Index